DOI QR코드

DOI QR Code

The Molecular Basis of Adenomyosis Development

  • Yang, Woo Sub (Department of Agricultural Biotechnology, Seoul National University) ;
  • Lim, Jeong Mook (Department of Agricultural Biotechnology, Seoul National University) ;
  • Ahn, Ji Yeon (Research Institutes of Agriculture and Life Sciences, Seoul National University)
  • Received : 2017.12.26
  • Accepted : 2018.03.23
  • Published : 2018.03.31

Abstract

Adenomyosis is a benign gynecological disease frequently affecting women of reproductive age. It has a negative impact on the quality of life, causing bleeding disorders, dysmenorrhea, chronic pelvic pain, and infertility. However, the molecular mechanisms involved in adenomyosis development remain unclear. This paper summarizes the reports found in the MEDLINE database on the molecular mechanisms involved in the development and progression of uterine adenomyosis. The literature search included the following terms: "adenomyosis," "adenomyoma," "pathogenesis," "molecular mechanisms," and "gynecological disorders." Only peer-reviewed, English-language journal articles were included. This review focuses on the molecular genetics, epigenetic modifications, and pivotal signaling pathways associated with adenomyosis development and progression, which will provide insights into and a better understanding of its underlying pathophysiology.

Keywords

References

  1. Balch, C., Fang, F., Matei, D. E., Huang, T. H., & Nephew, K. P. 2009. Minireview: epigenetic changes in ovarian cancer. Endocrinology, 150 : 4003-4011. https://doi.org/10.1210/en.2009-0404
  2. Bazot, M., Darai, E., Rouger, J., Detchev, R., Cortez, A., & Uzan, S. 2002. Limitations of transvaginal sonography for the diagnosis of adenomyosis, with histopathological correlation.. Ultrasound in obstetrics & gynecology, 20 : 605-611 https://doi.org/10.1046/j.1469-0705.2002.00852.x
  3. Cao, J. 2014. The functional role of long non-coding RNAs and epigenetics. Biological procedures online, 16 : 11. https://doi.org/10.1186/1480-9222-16-11
  4. Chen, J. R., Hsieh, T. Y., Chen, H. Y., Yeh, K. Y., Chen, K. S., ChangChien, Y. C., Hsu, Y. C. 2014. Absence of estrogen receptor alpha (ESR1) gene amplification in a series of breast cancers in Taiwan. Virchows Archiv : an international journal of pathology, 464 : 689-699. https://doi.org/10.1007/s00428-014-1576-8
  5. de Herreros, A. G., Peiro, S., Nassour, M., & Savagner, P. 2010. Snail family regulation and epithelial mesenchymal transitions in breast cancer progression. Journal of mammary gland biology and neoplasia, 15 : 135-147. https://doi.org/10.1007/s10911-010-9179-8
  6. Dueholm, M. 2006. Transvaginal ultrasound for diagnosis of adenomyosis: a review. Best practice & research. Clinical obstetrics & gynaecology, 20 : 569-582.
  7. Garavaglia, E., Audrey, S., Annalisa, I., Stefano, F., Iacopo, T., Laura, C., & Massimo, C. 2015. Adenomyosis and its impact on women fertility. Iranian journal of reproductive medicine, 13 : 327-336.
  8. Harada, T., Khine, Y. M., Kaponis, A., Nikellis, T., Decavalas, G., & Taniguchi, F. 2016. The Impact of Adenomyosis on Women's Fertility. Obstetrical & Gynecological Survey, 71 : 557-568. https://doi.org/10.1097/OGX.0000000000000346
  9. He, T. C., Sparks, A. B., Rago, C., Hermeking, H., Zawel, L., da Costa, L. T., . . . Kinzler, K. W. 1998. Identification of c-MYC as a target of the APC pathway. Science, 281 : 1509-1512. https://doi.org/10.1126/science.281.5382.1509
  10. Jain, N., & Goel, S. 2012. Cystic Adenomyoma simulates uterine malformation: A diagnostic dilemma: Case report of two unusual cases. Journal of human reproductive sciences, 5 : 285-288. https://doi.org/10.4103/0974-1208.106342
  11. Jiang, J. F., Sun, A. J., Xue, W., Deng, Y., & Wang, Y. F. 2016. Aberrantly expressed long noncoding RNAs in the eutopic endometria of patients with uterine adenomyosis. European journal of obstetrics, gynecology, and reproductive biology, 199 : 32-37. https://doi.org/10.1016/j.ejogrb.2016.01.033
  12. Jiang, Y. G., Luo, Y., He, D. L., Li, X., Zhang, L. L., Peng, T., . . . Lin, Y. H. 2007. Role of Wnt/beta-catenin signaling pathway in epithelial-mesenchymal transition of human prostate cancer induced by hypoxia-inducible factor-1alpha. International journal of urology, 14 : 1034-1039. https://doi.org/10.1111/j.1442-2042.2007.01866.x
  13. Kalluri, R., & Weinberg, R. A. 2009. The basics of epithelial-mesenchymal transition. The Journal of clinical investigation, 119 : 1420-1428. https://doi.org/10.1172/JCI39104
  14. Lai, E. C. 2004. Notch signaling: control of cell communication and cell fate. Development, 131 : 965-973. https://doi.org/10.1242/dev.01074
  15. Lamouille, S., Xu, J., & Derynck, R. 2014. Molecular mechanisms of epithelial-mesenchymal transition. Nature reviews. Molecular cell biology, 15 : 178-196.
  16. Lee, H. R., Kim, T. H., & Choi, K. C. 2012. Functions and physiological roles of two types of estrogen receptors, ERalpha and ERbeta, identified by estrogen receptor knockout mouse. Laboratory animal research, 28 : 71-76. https://doi.org/10.5625/lar.2012.28.2.71
  17. Liu, X., & Guo, S. W. 2012. Aberrant immunoreactivity of deoxyribonucleic acid methyltransferases in adenomyosis. Gynecologic and obstetric investigation, 74 : 100-108. https://doi.org/10.1159/000337718
  18. Liu, X., Nie, J., & Guo, S. W. 2012. Elevated immunoreactivity against class I histone deacetylases in adenomyosis. Gynecologic and obstetric investigation, 74 : 50-55. https://doi.org/10.1159/000336409
  19. Marino-Ramirez, L., Kann, M. G., Shoemaker, B. A., & Landsman, D. 2005. Histone structure and nucleosome stability. Expert review of proteomics, 2 : 719-729. https://doi.org/10.1586/14789450.2.5.719
  20. Miyazono, K. 2009. Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer. Proceedings of the Japan Academy. Series B, Physical and biological sciences, 85 : 314-323. https://doi.org/10.2183/pjab.85.314
  21. Oehler, M. K., Greschik, H., Fischer, D. C., Tong, X., Schuele, R., & Kieback, D. G. 2004. Functional characterization of somatic point mutations of the human estrogen receptor alpha (hERalpha) in adenomyosis uteri. Molecular human reproduction, 10 : 853-860. https://doi.org/10.1093/molehr/gah113
  22. Oh, S. J., Shin, J. H., Kim, T. H., Lee, H. S., Yoo, J. Y., Ahn, J. Y., . . . Jeong, J. W. 2013. beta-Catenin activation contributes to the pathogenesis of adenomyosis through epithelial-mesenchymal transition. The Journal of pathology, 231 : 210-222. https://doi.org/10.1002/path.4224
  23. Ota, H., Igarashi, S., Hatazawa, J., & Tanaka, T. 1998. Is adenomyosis an immune disease? Human reproduction update, 4 : 360-367. https://doi.org/10.1093/humupd/4.4.360
  24. Peric, H., & Fraser, I. S. 2006. The symptomatology of adenomyosis. Best practice & research. Clinical obstetrics & gynaecology, 20 : 547-555.
  25. Polakis, P. 2000. Wnt signaling and cancer. Genes & development, 14 : 1837-1851.
  26. Proctor, M., & Farquhar, C. 2006. Diagnosis and management of dysmenorrhoea. BMJ, 332 : 1134-1138. https://doi.org/10.1136/bmj.332.7550.1134
  27. Qi, S., Zhao, X., Li, M., Zhang, X., Lu, Z., Yang, C., . . . Zhang, N. 2015. Aberrant expression of Notch1/numb/snail signaling, an epithelial mesenchymal transition related pathway, in adenomyosis. Reproductive biology and endocrinology : RB&E, 13 : 96. https://doi.org/10.1186/s12958-015-0084-2
  28. Reinhold, C., Tafazoli, F., & Wang, L. 1998. Imaging features of adenomyosis. Human reproduction update, 4 : 337-349. https://doi.org/10.1093/humupd/4.4.337
  29. Sammour, A., Pirwany, I., Usubutun, A., Arseneau, J., & Tulandi, T. 2002. Correlations between extent and spread of adenomyosis and clinical symptoms. Gynecologic and obstetric investigation, 54 : 213-216. https://doi.org/10.1159/000068385
  30. Seto, E., & Yoshida, M. 2014. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harbor perspectives in biology, 6 : a018713. https://doi.org/10.1101/cshperspect.a018713
  31. Shan, S., Lv, Q., Zhao, Y., Liu, C., Sun, Y., Xi, K., . . . Li, C. 2015. Wnt/beta-catenin pathway is required for epithelial to mesenchymal transition in CXCL12 over expressed breast cancer cells. International journal of clinical and experimental pathology, 8 : 12357-12367.
  32. Shen, M., Liu, X., Zhang, H., & Guo, S. W. 2016. Transforming growth factor beta1 signaling coincides with epithelialmesenchymal transition and fibroblast-to-myofibroblast transdifferentiation in the development of adenomyosis in mice. Human Reproduction, 31 : 355-369.
  33. Shtutman, M., Zhurinsky, J., Simcha, I., Albanese, C., D'Amico, M., Pestell, R., & Ben-Ze'ev, A. 1999. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proceedings of the National Academy of Sciences of the United States of America, 96 : 5522-5527. https://doi.org/10.1073/pnas.96.10.5522
  34. Son, H., & Moon, A. 2010. Epithelial-mesenchymal Transition and Cell Invasion. Toxicological research, 26 : 245-252. https://doi.org/10.5487/TR.2010.26.4.245
  35. Stampoliou, A., Arapantoni-Dadioti, P., & Pavlakis, K. 2016. Epigenetic mechanisms in endometrial cancer. Journal of B.U.ON, 21 : 301-306.
  36. Tamai, K., Togashi, K., Ito, T., Morisawa, N., Fujiwara, T., & Koyama, T. 2005. MR imaging findings of adenomyosis: correlation with histopathologic features and diagnostic pitfalls Radiographics : a review publication of the Radiological Society of North America, Inc, 25 : 21-40
  37. Taran, F. A., Stewart, E. A., & Brucker, S. 2013. Adenomyosis: Epidemiology, Risk Factors, Clinical Phenotype and Surgical and Interventional Alternatives to Hysterectomy. Geburtshilfe und Frauenheilkunde, 73 : 924-931. https://doi.org/10.1055/s-0033-1350840
  38. Verrecchia, F., & Mauviel, A. 2002. Transforming growth factor-beta signaling through the Smad pathway: role in extracellular matrix gene expression and regulation. The Journal of investigative dermatology, 118 : 211-215. https://doi.org/10.1046/j.1523-1747.2002.01641.x
  39. Wang, Y., Shi, J., Chai, K., Ying, X., & Zhou, B. P. 2013. The Role of Snail in EMT and Tumorigenesis. Current cancer drug targets, 13 : 963-972. https://doi.org/10.2174/15680096113136660102
  40. Wang, Z., Li, Y., Kong, D., & Sarkar, F. H. 2010. The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness. Current drug targets, 11 : 745-751. https://doi.org/10.2174/138945010791170860
  41. Wortman, M. 2008. Endometrial biopsy: a reliable method for the diagnosis of adenomyosis. The Journal of reproductive medicine, 53 : 311-312
  42. Wu, D. T., Bitzer, M., Ju, W., Mundel, P., & Bottinger, E. P. 2005. TGF-beta concentration specifies differential signaling profiles of growth arrest/differentiation and apoptosis in podocytes. Journal of the American Society of Nephrology : JASN, 16 :3211-3221. https://doi.org/10.1681/ASN.2004121055
  43. Wu, Y., Sarkissyan, M., & Vadgama, J. V. 2015. Epigenetics in breast and prostate cancer. Methods in molecular biology, 1238 : 425-466.
  44. Xu, J., Lamouille, S., & Derynck, R. 2009. TGF-beta-induced epithelial to mesenchymal transition. Cell research, 19 : 156-172. https://doi.org/10.1038/cr.2009.5
  45. Yamamoto, S., Schulze, K. L., & Bellen, H. J. 2014. Introduction to Notch signaling. Methods in molecular biology, 1187 : 1-14
  46. Yazbeck, C., Falcone, S., Ballout, A., Gauche-Cazalis, C., Epelboin, S., Patrat, C., & Luton, D. 2015. Gynecologie, obstetrique & fertilite, 43 : 665-669. https://doi.org/10.1016/j.gyobfe.2015.09.001
  47. Yen, C. F., Huang, S. J., Lee, C. L., Wang, H. S., & Liao, S. K. 2017. Molecular Characteristics of the Endometrium in Uterine Adenomyosis and Its Biochemical Microenvironment. Reproductive Sciences, 24 : 1346-1361. https://doi.org/10.1177/1933719117691141
  48. Zhou, C., Zhang, T., Liu, F., Zhou, J., Ni, X., Huo, R., & Shi, Z. 2016. The differential expression of mRNAs and long noncoding RNAs between ectopic and eutopic endometria provides new insights into adenomyosis. Molecular bioSystems, 12 : 362-370. https://doi.org/10.1039/C5MB00733J
  49. Zi, Z., Chapnick, D. A., & Liu, X. 2012. Dynamics of TGF-beta/Smad signaling. FEBS letters, 586 : 1921-1928. https://doi.org/10.1016/j.febslet.2012.03.063