References
- J. J. Zou, Y. Xu, X. Zhang, and L. Wang, Isomerization of endo-dicyclopentadiene using Al-grafted MCM-41, Appl. Catal. A, 421-422, 79-85 (2012). https://doi.org/10.1016/j.apcata.2012.01.035
- E. Dalk and A. Dastan, Synthesis of cyclopentadiene derivatives by retro-Diels-Alder reaction of norbornadiene derivates. Tetrahedron, 71, 1966-1970 (2015). https://doi.org/10.1016/j.tet.2015.02.023
- B. H. Jeong and J. S. Han, Preparation of polycyclic hydrocarbon compounds by dimerization reaction of norbornadiene, J. Korean Soc. Propulsion Eng., 5, 190-193 (2007).
- E. Xing, Z. Mi, C. Xin, L. Wang, and X. Zhang, Endo- to exo-isomerization of tetrahydrodicyclopentadiene catalyzed by commercially available zeolites, J. Mol. Catal. A, 231, 161-167 (2005). https://doi.org/10.1016/j.molcata.2005.01.015
- Y. Li, J. J. Zou, X. Zhang, L. Wang, and Z. Mi, Product distribution of tricyclopentadiene from cycloaddition of dicyclopentadiene and cyclopentadiene: A theoretical and experimental study, Fuel, 89, 2522-2527 (2010). https://doi.org/10.1016/j.fuel.2009.11.020
- N. M. Dao, Water-assisted selective methoxycarbonylation of 1,6-hexanediamine with dimethyl carbonate, MS Thesis, Kyung Hee University, Seoul, Korea (2008).
-
M. D. Nguyen, L. V. Nguyen, J. S Lee, J. S Han, B. H. Jeong, M. S. Cheong, H. S. Kim, and H. J. Kang, Promoting effect of
$AlCl_3$ on the Fe-catalyzed dimerization of bicyclo[2.2.1]hepta-2,5-diene, Bull. Korean Chem. Soc., 29, 1364-1368 (2008). https://doi.org/10.5012/bkcs.2008.29.7.1364 - Y. Wu, Y. Xue, and C. K. Kim, Computational studies on the dimers and the thermal dimerization of norbornadiene, J. Comput. Chem., 29, 1250-1258 (2007).
- G. Zoche, Dimerization Process, US Patent 3,377,398 (1966).
- A. Schneider, H. K. Myers, and G. Suld, Dimerization of norbornadiene to a mixture of exo-endo and endo-endo hexacyclic dimers, US Patent 4,275,254 (1981).
- Y. Watanabe, T. Mitsudo, and S. W. Zhang, Pentacyclic hydrocarbon compound and halogenated pentacyclic hydrocarbon compound, and preparation processes thereof, US Patent 5,608,131 (1995).
- M. D. Nguyen, L. V. Nguyen, E. H. Jeon, J. H. Kim, M. Cheong, H. S Kim, and J. S. Lee, Fe-containing ionic liquids as catalysts for the dimerization of bicyclo[2.2.1]hepta-2,5-diene, J. Catal., 258, 5-13 (2008). https://doi.org/10.1016/j.jcat.2008.05.008
- N. F. Goldshleger, B. L. Azbel, Y. L. Isakov, E. S. Shpiro, and K. M. Minachev, Cyclodimerization of bicyclo[2.2.1]hepta-2,5-diene in the presence of rhodium containing zeolite catalysts, Stud. Surf. Sci. Catal., 105, 1235-1242 (1997).
- N. F. Gol'dshleger, B. L. Azbel, Y. L. Isakov, E. S. Shpiro, and K. M. Minachev, Selective rhodium-containing zeolite catalysts for cyclodimerization of bicyclo[2.2.1]hepta-2,5-diene, J. Mol. Catal. A, 106, 159-168 (1996). https://doi.org/10.1016/1381-1169(95)00255-3
- H. S. Chung, C. S. H. Chen, R. A. Kremer, and J. R. Boulton, Recent delopments in high-energy density liquid hydrocarbon fuels, Energy Fuels, 13, 641-649 (1999). https://doi.org/10.1021/ef980195k
- B. H. Jeong, J. Han, J. K. Jeon, E. Park, and K. Jeong, Method for preparing norbornadiene dimer using heterogeneous catalyst, Korea Patent 10-1616071 (2016).
- K. Jeong, J. Kim, J. Han, B. Jeong, and J. K. Jeon, Dimerization of bicyclo[2.2.1.]hepta-2,5-diene over various zeolite catalysts, Top. Catal., 60, 743-749 (2017). https://doi.org/10.1007/s11244-017-0780-6
- K. Jeong, J. Kim, J. Han, B. Jeong, and J. K. Jeon, Synthesis of high-energy-density fuel through the dimerization of bicyclo [2.2.1]hepta-2,5-diene over a nanoporous catalyst, J. Nanosci. Nanotechnol., 17, 8255-8259 (2017). https://doi.org/10.1166/jnn.2017.15097
- M. Niwa and N. Katada, New method for the temperature programmed desorption (TPD) of ammonia experiment for characterization of zeolite acidity: A review, Chem. Rec., 13, 432-455 (2013). https://doi.org/10.1002/tcr.201300009
- W. E. Farneth and R. J. Gorte, Methods for characterizing zeolite acidity, Chemical Rev., 95, 615-635 (1995). https://doi.org/10.1021/cr00035a007
- E. O. Lee, S. Y. Yun, Y. K. Park, S. Y. Jeong, J. S. Han, and J. K. Jeon, Selctive hydroisomerization of n-dodecane over platinum supported on SAPO-11, J. Ind. Eng. Chem., 20, 775-780 (2014). https://doi.org/10.1016/j.jiec.2013.06.006
- B. Chakraborty and B. Viswanathan, Surface acidity of MCM-41 by in situ IR studies of pyridine adsorption, Catal Today, 49, 253-260 (1999). https://doi.org/10.1016/S0920-5861(98)00431-3
- G. T. Palomino, J. J. C. Pascual, M. R. Delgado, J. B. Parra, and C. O. Arean, FT-IR studies on the acidity of gallium-substituted mesoporous MCM-41 silica, Mater. Chem. Phys., 85, 145-150 (2004). https://doi.org/10.1016/j.matchemphys.2003.12.020
-
M. I. Zaki, M. A. Hasan, F. A. Al-Sagheer, and L. Pasupulety, In situ FTIR spectra of pyridine adsorbed on
$SiO_2-Al_2O_3$ ,$TiO_2$ ,$ZrO_2$ and$CeO_2$ : general considerations for the identification of acid sites on surfaces of finely divided metal oxides, Colloids Surf. A, 190, 261-274 (2001). https://doi.org/10.1016/S0927-7757(01)00690-2 - J. Kim, J. Han, T. S. Kwon, Y. K. Park, and J. K. Jeon, Oligomerization and isomerization of dicyclopentadiene over mesoporous materials produced from zeolite beta, Catal. Today, 232, 69-74 (2014). https://doi.org/10.1016/j.cattod.2014.02.004
- K. Y. Kwak, M. S. Kim. D. W. Lee, Y. H. Cho, J. Han, T. S. Kwon, and K. Y. Lee, Synthesis of cyclopentadiene trimer (tricyclopentadiene) over zeolites and Al-MCM-41: The effects of pore size and acidity, Fuel, 137, 230-236 (2014). https://doi.org/10.1016/j.fuel.2014.07.095