DOI QR코드

DOI QR Code

A Development of Effective Object Detection System Using Multi-Device LiDAR Sensor in Vehicle Driving Environment

차량주행 환경에서 다중라이다센서를 이용한 효과적인 검출 시스템 개발

  • 권진산 (전자부품연구원 SoC 플랫폼 연구센터) ;
  • 김동순 (전자부품연구원 SoC 플랫폼 연구센터) ;
  • 황태호 (전자부품연구원 SoC 플랫폼 연구센터) ;
  • 박현문 (전자부품연구원 SoC 플랫폼 연구센터)
  • Received : 2018.03.28
  • Accepted : 2018.04.15
  • Published : 2018.04.30

Abstract

The importance of sensors on a self-driving vehicle has rising since it act as eyes for the vehicle. Lidar sensors based on laser technology tend to yield better image quality with more laser channels, thus, it has higher detection accuracy for obstacles, pedistrians, terrain, and other vechicles. However, incorporating more laser channels results higher unit price more than ten times, and this is a major drawback for using high channel lidar sensors on a vehicle for actual consumer market. To come up with this drawback, we propose a method of integrating multiple low channel, low cost lidar sensors acting as one high channel sensor. The result uses four 16 channels lidar sensors with small form factor acting as one bulky 64 channels sensor, which in turn, improves vehicles cosmetic aspects and helps widespread of using the lidar technology for the market.

자동차의 자율주행 기술이 확대되면서 '눈'의 역할을 하는 센서가 점차 중요시되고 있다. 최근 차량에 장착되는 라이다 센서는 채널이 많을수록 피사체에 반사된 신호 또한 풍부해짐에 따라 장애물, 지형, 차량 등 주변 환경 탐색의 정확도가 높아진다. 하지만, 라이다 센서는 채널 증가에 따른 열배 이상 가격의 차이가 있으며, 이러한 가격적인 문제로 보급형 차량보다는 고가의 차량에만 부분적으로 사용되고 있다. 본 연구는 저 가격의 16 채널의 라이다를 복수개로 구성하여 동시에 신호를 수집 처리하여 하나의 입체공간으로 융합하고 이를 나타낼 수 있게 함으로써 64 채널의 라이더와 같은 효과를 나타낼 수 있게 하였다. 이를 통해서 차량 심미성의 개선과 함께 보급화를 위한 기반을 제공할 수 있다.

Keywords

References

  1. W. Kim and E. Ha, "Performing Missions of a Minicar using a Single Camera," J. of the Korea Institute of Electronic Communication Science, vol. 12, no. 1, 2017, pp. 123-128. https://doi.org/10.13067/JKIECS.2017.12.1.123
  2. J. Jang and H. Lee, "Measuring technologies of traffic conflict Risk between vehicles and pedestrians," J. of the Korea Institute of Electronic Communication Science, vol. 12, no. 2, 2017, pp. 255-260. https://doi.org/10.13067/JKIECS.2017.12.2.255
  3. W. Park and W. Choi, "Overview of sensor fusion techniques for vehicle positioning," J. of the Korea Institute of Electronic Communication Science, vol. 11, no. 2, 2016, pp. 139-144. https://doi.org/10.13067/JKIECS.2016.11.2.139
  4. ROS. Open Source Robotics Foundation 2016, June 15 , Retrieved from http://wiki.ros.org/rviz.
  5. P. Wlodarczyk, S. Pustelny, D. Budker, and M. Lipinski, "Multi-channel data acquisition system with absolute time synchronization," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, no. 763, Nov. 2014, pp. 150-154.
  6. S. Oh and H. Kang, "Object Detection and Classification by Decision-Level Fusion for Intelligent Vehicle Systems," Sensors, vol. 17, no. 1, 2017, pp. 1-21. https://doi.org/10.1109/JSEN.2017.2761499
  7. J. Papon, A. Abramov, M. Schoeler, F. Worgotter, and F. Voxel, "cloud connectivity segmentation-supervoxels for point clouds," In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, June 2013, pp. 2027-2034.
  8. R. Rusu, Uniform Sampling - PCL API Documentation - Point Cloud Library, April 2017. Retrieved from http://docs.pointclouds.org/.
  9. P. Arbelaez, J. Pont-Tuset, J. Barron, F. Marques, and J. Malik, "Multiscale combinat orial grouping." In Proceedings of the Conference on Computer Vision and Pattern Recognition, Jun. 2014 pp. 328-335.
  10. M. Velas, M. Spanel, M. Hradis, and A. Herout, "CNN for very fast ground segmentation in Velodyne lidar data," International Conference on Robotics and Automation, 2017, Sep. 2017, pp. 1-7.