DOI QR코드

DOI QR Code

3D Object Encryption Employed Chaotic Sequence in Integral Imaging

집적영상에서의 혼돈 수열을 사용한 3D 물체의 암호화

  • Received : 2018.01.06
  • Accepted : 2018.04.15
  • Published : 2018.04.30

Abstract

This paper presents a novel three-dimensional (3D) object encryption scheme by combining the use of the virtual optics and the chaotic sequence. A virtual 3D object is digitally produced using a two-dimensional (2D) elemental image array (EIA) created with a virtual pinhole array. Then, through a logistic mapping of chaotic sequence, a final encrypted video can be produced. Such method converts the value of a pixel which is the basic information of an image. Therefore, it gives an improved encryption result compared to other existing methods. Through computational experiments, we were able to verify our method's feasibility and effectiveness.

본 논문에서는 집적영상에서 가상광학과 혼돈 수열(chaos sequence)을 결합하여 3차원 물체 영상을 암호화는 새로운 방법을 제안한다. 먼저 가상 핀홀 배열(virtual pinhole array)을 통하여 2차원 요소영상 배열(EIA)을 생성한 후, 이를 이용해 3차원 물체를 디지털로 만든다. 그 후 혼돈 수열의 논리적 연산을 통해 최종 암호화 영상을 만든다. 이러한 방법은 영상 데이터를 시각화하기 위한 영상의 기본 정보인 픽셀의 값을 변환시키기 때문에 기존의 암호화 방법보다 향상된 암호화 결과를 얻을 수 있다. 실험을 통해 본 암호화 방법의 유효성과 안정성을 검증한다.

Keywords

References

  1. P. Refregier and B. Javidi, "Optical image encryption based on input plane and Fourier plane random encoding," Optics Letters, vol. 20, no. 7, 1995, pp. 767-769. https://doi.org/10.1364/OL.20.000767
  2. X. Li, S. Cho, and S. Kim, "A 3D image encryption technique using computer-generated integral imaging and cellular automata transform," Optik - Int. J. for Light and Electron Optics, vol. 125, no. 13, July 2014, pp. 2983-2990. https://doi.org/10.1016/j.ijleo.2013.12.036
  3. K. Kim, D. Wang, and S. Han, "Home Security System Based on IoT," J. of the Korea Institute of Electronic Communication Sciences, vol. 12, no. 1, 2017, pp. 147-154. https://doi.org/10.13067/JKIECS.2017.12.1.147
  4. D. Kim, "Implementation Plan and Requirements Analysis of Access Control for Cyber Security of Nuclear Power Plants," J. of the Korea Institute of Electronic Communication Sciences, vol. 11, no. 1, 2016, pp. 1-8. https://doi.org/10.13067/JKIECS.2016.11.1.1
  5. H. Kim, S. Cho, U. Choi, M. Kwon and G Kong, "Synthesis of Uniform CA and 90/150 Hybrid CA," J. of the Korea Institute of Electronic Communication Sciences, vol. 11, no. 3, 2016, pp. 293-302. https://doi.org/10.13067/JKIECS.2016.11.3.293
  6. S. Kishk and B. Javidi, "Information hiding technique with double phase encoding," Applied Optics, vol. 41, no. 26, 2002, pp. 5462-5470. https://doi.org/10.1364/AO.41.005462
  7. J. Sang, H. Xiang, L. Fu, and N. Sang, "Security analysis and improvement on a double-random phase-encoding technique based information hiding method," Optics Communications, vol. 282, no. 12, June 2009, pp. 2307-2317. https://doi.org/10.1016/j.optcom.2009.02.068
  8. S. Liu, and J. T. Sheridan, "Optical encryption by combining image scrambling techniques in fractional Fourier domains," Optics Communications, vol. 287, no. 1, Jan. 2013, pp. 73-80. https://doi.org/10.1016/j.optcom.2012.09.033
  9. G. Unnikrishnan, J. Joseph, and K. Singh. "Optical encryption by double-random phase encoding in the fractional Fourier domain," Optics Letters, vol. 25, no. 12, 2000, pp. 887-889. https://doi.org/10.1364/OL.25.000887
  10. S. Yuan, X. Zhou, and M. Alam, "Information hiding based on double random-phase encoding and public-key cryptography," Optics Express, vol. 17, no. 5, 2009, pp. 3270-3284. https://doi.org/10.1364/OE.17.003270
  11. W. Li and I. Lee, "Modified computational integral imaging-based double image encryption using fractional Fourier transform," Optics and Lasers in Engineering, vol. 66, no. 3, Mar. 2015, pp. 112-121. https://doi.org/10.1016/j.optlaseng.2014.08.016
  12. W. Li and S. Kim, "Optical 3D watermark based digital image watermarking for telemedicine," Optics and Lasers in Engineering, vol. 51, no. 12, Dec. 2013, pp. 1310-1320. https://doi.org/10.1016/j.optlaseng.2013.06.001
  13. Z. Liu, J. Dai, X. Sun, and S. Liu, "Color image encryption by using the rotation of color vector in Hartley transform domains," Optics and Lasers in Engineering, vol. 48, no. 8, 2010, pp. 800-805. https://doi.org/10.1016/j.optlaseng.2010.02.005
  14. M. Abuturab, "Security enhancement of color image cryptosystem by optical interference principle and spiral phase encoding," Applied Optics, vol. 52, no. 8, 2013, pp. 1555-1563. https://doi.org/10.1364/AO.52.001555
  15. Z. Liu, M. Gong, Y. Dou, F. Liu, S. Lin, M. A. Ahmad, J. Dai, and S. Liu, "Double image encryption by using Arnold transform and discrete fractional angular transform," Optics and Lasers in Engineering, vol. 50, no. 2, Feb. 2012, pp. 248-255. https://doi.org/10.1016/j.optlaseng.2011.08.006
  16. B. Javidi, A. Sergent, G. Zhang, and L. Guibert, "Fault tolerance properties of a double phase encoding encryption technique," Optical Engineering, vol. 36, no. 4, Apr. 1997. pp. 992-999. https://doi.org/10.1117/1.601144
  17. J. Hyun, D. Hwang, D. Shin, and E. Kim, "Curved computational integral imaging reconstruction technique for resolution-enhanced display of three-dimensional object images," Applied Optics, vol. 46, no. 31, 2007, pp. 7697-7708. https://doi.org/10.1364/AO.46.007697
  18. S. Hong, J. Jang, and B. Javidi, "Three-dimensional volumetric object reconstruction using computational integral imaging," Optics Express, vol. 12, no. 3, 2004, pp. 483-491. https://doi.org/10.1364/OPEX.12.000483
  19. Y. Frauel and B. Javidi. "Digital three-dimensional image correlation by use of computer-reconstructed integral imaging," Applied Optics, vol. 41, no. 26, 2002, pp. 5488-5496. https://doi.org/10.1364/AO.41.005488
  20. H. Arimoto and B. Javidi, "Integral three-dimensional imaging with digital reconstruction," Optics Letters, vol. 26, no. 3, 2001, pp. 157-159. https://doi.org/10.1364/OL.26.000157
  21. D. Shin, C. Tan, B. Lee, J. Lee, and E. Kim, "Resolution-enhanced three-dimensional image reconstruction by use of smart pixel mapping in computational integral imaging," Applied Optics, vol. 47, no. 35, 2008, pp. 6656-6665. https://doi.org/10.1364/AO.47.006656
  22. D. Shin, B. Lee, and J. Lee, "Occlusion removal method of partially occluded 3D object using sub-image block matching in computational integral imaging," Optics Express, vol. 16, no. 21, 2008, pp. 16294-16304. https://doi.org/10.1364/OE.16.016294
  23. M. Cho and B. Javidi, "Computational reconstruction of three-dimensional integral imaging by rearrangement of elemental image pixels," J. of Display Technology, vol. 5, no. 2, 2009, pp. 61-65. https://doi.org/10.1109/JDT.2008.2004857
  24. Y. Piao and E. Kim, "Resolution-enhanced reconstruction of far 3-D objects by using a direct pixel mapping method in computational curving-effective integral imaging," Applied Optics, vol. 48, no. 34, 2009, pp. H222-H230. https://doi.org/10.1364/AO.48.00H222