DOI QR코드

DOI QR Code

Prospect and Roles of Molecular Ecogenetic Techniques in the Ecophysiological Study of Cyanobacteria

남조류의 생리·생태 연구에서 분자생태유전학적 기법의 역할 및 전망

  • Ahn, Chi-Yong (Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB))
  • 안치용 (한국생명공학연구원 세포공장연구센터)
  • Received : 2018.01.05
  • Accepted : 2018.02.14
  • Published : 2018.03.31

Abstract

Although physiological and ecological characteristics of cyanobacteria have been studied extensively for decades, unknown areas still remain greater than the already known. Recently, the development of omics techniques based on molecular biology has made it possible to view the ecosystem from a new and holistic perspective. The molecular mechanism of toxin production is being widely investigated, by comparative genomics and the transcriptomic studies. Biological interaction between bacteria and cyanobacteria is also explored: how their interactions and genetic biodiversity change depending on seasons and environmental factors, and how these interactions finally affect each component of ecosystem. Bioinformatics techniques have combined with ecoinformatics and omics data, enabling us to understand the underlying complex mechanisms of ecosystems. Particularly omics started to provide a whole picture of biological responses, occurring from all layers of hierarchical processes from DNA to metabolites. The expectation is growing further that algal blooms could be controlled more effectively in the near future. And an important insight for the successful bloom control would come from a novel blueprint drawn by omics studies.

남조류에 대한 오랜 연구로 많은 사실을 알게 되었음에도 여전히 미지의 영역으로 남아있는 부분이 많은데, 분자 생물학에 기반한 오믹스 기술의 발전으로 새로운 도구를 이용한 다른 관점에서의 연구가 최근 활발해지고 있다. 일차적으로는 유전체 염기서열 분석기술을 사용하여 다양한 남조류의 유전체 비교분석과 유전자의 발현 양상을 연구함으로써, 독소 합성의 조절 기작 등 생리적 특성이 나타나는 원리 규명에 많은 노력이 기울여지고 있다. 또한 남조류 유전형의 다양성과 이들이 밀접하게 상호작용하는 박테리아 군집이 계절적 및 환경적 요인에 어떻게 반응하여 변화하고, 이러한 변화가 생태계에는 어떤 영향을 미치는지에 대한 연구가 생물정보학 분석기법과 결합하면서, 생태계의 복잡한 작동방식에 대한 이해도 늘어나고 있다. 특히 다양한 오믹스 기법을 복합 적용함으로써 생태계 안에서 일어나는 모든 층위의 생물학적 반응에 대한 총체적 그림을 그리는 것이 현실화되고 있으며, 이렇게 그려진 설계도로부터 녹조를 효과적으로 제어하고 건강한 수생태계를 유지할 수 있는 새로운 통찰의 가능성에 대한 기대가 고조되고 있다.

Keywords

References

  1. Ahn, C.-Y., H.-M. Oh and Y.-S. Park. 2011. Evaluation of environmental factors on cyanobacterial bloom in eutrophic reservoir using artificial neural networks. Journal of Phycology 47: 495-504. https://doi.org/10.1111/j.1529-8817.2011.00990.x
  2. Berry, M.A., J.D. White, T.W. Davis, S. Jain, T.H. Johengen, G.J. Dick, O. Sarnelle and V.J. Denef. 2017. Are oligotypes meaningful ecological and phylogenetic units? A case study of Microcystis in freshwater lakes. Frontiers in Microbiology 8: Article 365.
  3. Bozarth, C.S., A.D. Schwartz, J.W. Shepardson, F.S. Colwell and T.W. Dreher. 2010. Population turnover in a Microcystis bloom results in predominantly nontoxigenic variants late in the season. Applied and Environmental Microbiology 76: 5207-5213. https://doi.org/10.1128/AEM.00001-10
  4. Burke, C., P. Steinberg, D. Rusch, S. Kjelleberg and T. Thomas. 2011. Bacterial community assembly based on functional genes rather than species. Proceedings of the National Academy of Sciences 108: 14288-14293. https://doi.org/10.1073/pnas.1101591108
  5. D’Agostino, P.M., J.N. Woodhouse, A.K. Makower, A.C. Yeung, S.E. Ongley, M.L. Micallef, M.C. Moffitt and B.A. Neilan. 2016. Advances in genomics, transcriptomics and proteomics of toxin-producing cyanobacteria. Environmental Microbiology Reports 8: 3-13. https://doi.org/10.1111/1758-2229.12366
  6. Davis, T.W., D.L. Berry, G.L. Boyer and C.J. Gobler. 2009. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8: 715-725. https://doi.org/10.1016/j.hal.2009.02.004
  7. Deblois, C.P. and P. Juneau. 2012. Comparison of resistance to light stress in toxic and non-toxic strains of Microcystis aeruginosa (cyanophyta). Journal of Phycology 48: 1002-1011. https://doi.org/10.1111/j.1529-8817.2012.01191.x
  8. Frangeul, L., P. Quillardet, A.M. Castets, J.F. Humbert, H.C. Matthijs, D. Cortez, A. Tolonen, C.C. Zhang, S. Gribaldo, J.C. Kehr, Y. Zilliges, N. Ziemert, S. Becker, E. Talla, A. Latifi, A. Billault, A. Lepelletier, E. Dittmann, C. Bouchier and N.T. de Marsac. 2008. Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium. BMC Genomics 9: 274. https://doi.org/10.1186/1471-2164-9-274
  9. Fuks, D., J. Radic, T. Radic, M. Najdek, M. Blazina, D. Degobbis and N. Smodlaka. 2005. Relationships between heterotrophic bacteria and cyanobacteria in the northern Adriatic in relation to the mucilage phenomenon. Science of the Total Environment 353: 178-188. https://doi.org/10.1016/j.scitotenv.2005.09.015
  10. Gan, N., Y. Xiao, L. Zhu, Z. Wu, J. Liu, C. Hu and L. Song. 2012. The role of microcystins in maintaining colonies of bloom-forming Microcystis spp. Environmental Microbiology 14: 730-742. https://doi.org/10.1111/j.1462-2920.2011.02624.x
  11. Guedes, I.A., D.M. da Costa Leite, L.A. Manhaes, P.M. Bisch, S.M.F.O. Azevedo and A.B.F. Pacheco. 2014. Fluctuations in microcystin concentrations, potentially toxic Microcystis and genotype diversity in a cyanobacterial community from a tropical reservoir. Harmful Algae 39: 303-309. https://doi.org/10.1016/j.hal.2014.09.001
  12. Harke, M.J. and C.J. Gobler. 2013. Global transcriptional responses of the toxic cyanobacterium, Microcystis aeruginosa, to nitrogen stress, phosphorus stress, and growth on organic matter. PLoS ONE 8: e69834. https://doi.org/10.1371/journal.pone.0069834
  13. Harke, M.J., T.W. Davis, S.B. Watson and C.J. Gobler. 2016a. Nutrient-controlled niche differentiation of western Lake Erie cyanobacterial populations revealed via metatranscriptomic surveys. Environmental Science & Technology 50: 604-615. https://doi.org/10.1021/acs.est.5b03931
  14. Harke, M.J., M.M. Steffen, C.J. Gobler, T.G. Otten, S.W. Wilhelm, S.A. Wood and H.W. Paerl. 2016b. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54: 4-20. https://doi.org/10.1016/j.hal.2015.12.007
  15. Hong, D.-G., K.-S. Jeong, D.-K. Kim and G.-J. Joo. 2014. Remedial strategy of algal proliferation in a regulated river system by integrated hydrological control: An evolutionary modelling framework. Marine and Freshwater Research 65: 379-395. https://doi.org/10.1071/MF13004
  16. Hotto, A.M., M.F. Satchwell, D.L. Berry, C.J. Gobler and G.L. Boyer. 2008. Spatial and temporal diversity of microcystins and microcystin-producing genotypes in Oneida Lake, NY. Harmful Algae 7: 671-681. https://doi.org/10.1016/j.hal.2008.02.001
  17. Hur, M., I. Lee, B.-M. Tak, H.J. Lee, J.J. Yu, S.U. Cheon and B.-S. Kim. 2013. Temporal shifts in cyanobacterial communities at different sites on the Nakdong River in Korea. Water Research 47: 6973-6982. https://doi.org/10.1016/j.watres.2013.09.058
  18. Jahnichen, S., T. Ihle, T. Petzoldt and J. Benndorf. 2007. Impact of inorganic carbon availability on microcystin production by Microcystis aeruginosa PCC 7806. Applied and Environmental Microbiology 73: 6994-7002. https://doi.org/10.1128/AEM.01253-07
  19. Joung, S.-H., H.-M. Oh, S.-R. Ko and C.-Y. Ahn. 2011. Correlations between environmental factors and toxic and non-toxic Microcystis dynamics during bloom in Daechung Reservoir, Korea. Harmful Algae 10: 188-193. https://doi.org/10.1016/j.hal.2010.09.005
  20. Juttner, F. and S.B. Watson. 2007. Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters. Applied and Environmental Microbiology 73: 4395-4406. https://doi.org/10.1128/AEM.02250-06
  21. Kaneko, T., N. Narajima, S. Okamoto, I. Suzuki, Y. Tanabe, M. Tamaoki, Y. Nakamura, F. Kasai, A. Watanabe and K. Kawashima. 2007. Complete genomic structure of the bloom-forming toxic cyanobacterium Microcystis aeruginosa NIES-843. DNA Research 14: 247-256. https://doi.org/10.1093/dnares/dsm026
  22. Kaneko, T., S. Sato, H. Kotani, A. Tanaka, E. Asamizu, Y. Nakamura, N. Miyajima, M. Hirosawa, M. Sugiura, S. Sasamoto, T. Kimura, T. Hosouchi, A. Matsuno, A. Muraki, N. Nakazaki, K. Naruo, S. Okumura, S. Shimpo, C. Takeuchi, T. Wada, A. Watanabe, M. Yamada, M. Yasuda and S. Tabata. 1996. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Research 3: 109-136. https://doi.org/10.1093/dnares/3.3.109
  23. Kardinaal, W.E.A., I. Janse, M. Kamst-van Agterveld, M. Meima, J. Snoek, L.R. Mur, J. Huisman, G. Zwart and P.M. Visser. 2007. Microcystis genotype succession in relation to microcystin concentrations in freshwater lakes. Aquatic Microbial Ecology 48: 1-12. https://doi.org/10.3354/ame048001
  24. Kim, S.-G., S.-H. Joung, C.-Y. Ahn, S.-R. Ko, S.M. Boo and H.- M. Oh. 2010. Annual variation of Microcystis genotypes and their potential toxicity in water and sediment from eutrophic reservoir. FEMS Microbiology Ecology 74: 93-102. https://doi.org/10.1111/j.1574-6941.2010.00947.x
  25. Kurmayer, R. and T. Kutzenberger. 2003. Application of realtime PCR for quantification of microcystin genotypes in a population of the toxic cyanobacterium Microcystis sp. Applied and Environmental Microbiology 9: 6723-6730.
  26. Kurmayer, R., G. Christiansen and I. Chorus. 2003. The abundance of microcystin-producing genotypes correlates positively with colony size in Microcystis sp. and determines its microcystin net production in Lake Wannsee. Applied and Environmental Microbiology 69: 787-795. https://doi.org/10.1128/AEM.69.2.787-795.2003
  27. Lee, Y.-K., C.-Y. Ahn, H.-S. Kim and H.-M. Oh. 2010. Cyanobactericidal effect of Rhodococcus sp. isolated from eutrophic lake on Microcystis sp. Biotechnology Letters 32: 1673-1678. https://doi.org/10.1007/s10529-010-0350-5
  28. Lemes, G.A.F., R. Kersanach, L.P. Pinto, O.A. Dellagostin, J.S. Yunes and A. Matthiensen. 2008. Biodegradation of microcystins by aquatic Burkholderia sp. from a South Brazilian coastal lagoon. Ecotoxicology and Environmental Safety 69: 358-365. https://doi.org/10.1016/j.ecoenv.2007.03.013
  29. Li, Y. and D. Li. 2012. Competition between toxic Microcystis aeruginosa and nontoxic Microcystis wesenbergii with Anabaena PCC7120. Journal of Applied Phycology 24: 69-78. https://doi.org/10.1007/s10811-010-9648-x
  30. Makarewicz, J.C. and P. Bertram. 1991. Evidence for the restoration of the Lake Erie ecosystem - water quality, oxygen levels, and pelagic function appear to be improving. Bioscience 41: 216-223. https://doi.org/10.2307/1311411
  31. Maruyama T., K. Kato, A. Yokoyama, T. Tanaka, A. Hiaishi and H.D. Park. 2003. Dynamics of microcystin degrading bacteria in mucilage of Microcystis. Microbial Ecology 46: 279-288. https://doi.org/10.1007/s00248-002-3007-7
  32. Meissner, S., D. Steinhauser and E. Dittmann. 2015. Metabolomic analysis indicates a pivotal role of the hepatotoxin microcystin in high light adaptation of Microcystis. Environmental Microbiology 17: 1497-1509. https://doi.org/10.1111/1462-2920.12565
  33. Meissner, S., J. Fastner and E. Dittmann. 2013. Microcystin production revisited: conjugate formation makes a major contribution. Environmental Microbiology 15: 1810-1820. https://doi.org/10.1111/1462-2920.12072
  34. Michalak, A.M., E.J. Anderson, D. Beletsky, S. Boland, N.S. Bosch, T.B. Bridgeman, J.D. Chaffin, K. Cho, R. Confesor, I. Daloglu, J.V. DePinto, M.A. Evans, G.L. Fahnenstiel, L. He, J.C. Ho, L. Jenkins, T.H. Johengen, K.C. Kuo, E. LaPorte, X. Liu, M.R. McWilliams, M.R. Moore, D.J. Posselt, R.P. Richards, D. Scavia, A.L. Steiner, E. Verhamme, D.M. Wright and M.A. Zagorski. 2013. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proceedings of the National Academy of Sciences 110: 6448-6452. https://doi.org/10.1073/pnas.1216006110
  35. Morrison, J.M., K.D. Baker, R.M. Zamor, S. Nikolai, M.S. Elshahed and N.H. Youssef. 2017. Spatiotemporal analysis of microbial community dynamics during seasonal stratification events in a freshwater lake (Grand Lake, OK, USA). PLoS ONE 12: e0177488. https://doi.org/10.1371/journal.pone.0177488
  36. Otsuka, S., S. Suda, R. Li, M. Watanabe, H. Oyaizu, S. Matsumoto and M.M. Watanabe. 1999. Phylogenetic relationships between toxic and non-toxic strains of the genus Microcystis based on 16S to 23S internal transcribed spacer sequence. FEMS Microbiology Letters 172: 15-21. https://doi.org/10.1111/j.1574-6968.1999.tb13443.x
  37. Otsuka, S., S. Suda, S. Shibata, H. Oyaizu, S. Matsumoto and M.M. Watanabe. 2001. A proposal for the unification of five species of the cyanobacterial genus Microcystis Kützing ex Lemmermann 1907 under the rules of the Bacteriological Code. International Journal of Systematic and Evolutionary Microbiology 51: 873-879. https://doi.org/10.1099/00207713-51-3-873
  38. Otten, T.G. and H.W. Paerl. 2011. Phylogenetic inference of colony isolates comprising seasonal Microcystis blooms in Lake Taihu, China. Microbial Ecology 62: 907-918. https://doi.org/10.1007/s00248-011-9884-x
  39. Otten, T.G., J.L. Graham, T.D. Harris and T.W. Dreher. 2016. Elucidation of taste- and odor-producing bacteria and toxigenic cyanobacteria in a Midwestern drinking water supply reservoir by shotgun metagenomic analysis. Applied and Environmental Microbiology 82: 5410-5420. https://doi.org/10.1128/AEM.01334-16
  40. Paerl, H.W. 2014. Mitigating harmful cyanobacterial blooms in a human- and climatically-impacted world. Life 4: 988-1012. https://doi.org/10.3390/life4040988
  41. Paerl, H.W. and J. Huisman. 2008. Blooms like it hot. Science 320: 57-58. https://doi.org/10.1126/science.1155398
  42. Paerl, H.W. and J.T. Scott. 2010. Throwing fuel on the fire: synergistic effects of excessive nitrogen inputs and global warming on harmful algal blooms. Environmental Science & Technology 44: 7756-7758. https://doi.org/10.1021/es102665e
  43. Paerl, H.W., H. Xu, M.J. McCarthy, G. Zhu, B. Qin, Y. Li and W.S. Gardner. 2011 Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy. Water Research 45: 1973-1983. https://doi.org/10.1016/j.watres.2010.09.018
  44. Paerl, H.W., W.S. Gardner, M.J. McCarthy, B.L. Peierls and S.W. Wilhelm. 2014. Algal blooms: Noteworthy nitrogen. Science 346: 175.
  45. Park, Y.-S. and S.-J. Hwang. 2016. Ecological monitoring, assessment, and management in freshwater systems. Water (Switzerland) 8: 324.
  46. Parveen, B., V. Ravet, C. Djediat, I. Mary, C. Quiblier, D. Debroas and J.F. Humbert. 2013. Bacterial communities associated with Microcystis colonies differ from free-living communities living in the same ecosystem. Environmental Microbiology Reports 5: 716-724.
  47. Penn, K., J. Wang, S.C. Fernando and J.R. Thompson. 2014. Secondary metabolite gene expression and interplay of bacterial functions in a tropical freshwater cyanobacterial bloom. ISME Journal 8: 1866-1878. https://doi.org/10.1038/ismej.2014.27
  48. Phelan, R.R. and T.G. Downing. 2011. A growth advantage for microcystin production by Microcystis PCC7806 under high light. Journal of Phycology 47: 1241-1246. https://doi.org/10.1111/j.1529-8817.2011.01056.x
  49. Rantala, A., D.P. Fewer, M. Hisbergues, L. Rouhiainen, J. Vaitomaa, T. Borner and K. Sivonen. 2004. Phylogenetic evidence for the early evolution of microcystin synthesis. Proceedings of the National Academy of Sciences 101: 568-573. https://doi.org/10.1073/pnas.0304489101
  50. Rinta-Kanto, J.M. 2007. Biogeography and genetic diversity of toxin producing cyanobacteria in a Laurentian Great Lake. Ph.D. Dissertation, University of Tennessee. pp. 197.
  51. Rinta-Kanto, J.M., E.A. Konopko, J.M. DeBruyn, R.A. Bourbonniere, G.L. Boyer and S.W. Wilhelm. 2009. Lake Erie Microcystis: relationship between microcystin production, dynamics of genotypes and environmental parameters in a large lake. Harmful Algae 8: 665-673. https://doi.org/10.1016/j.hal.2008.12.004
  52. Sabart, M., D. Pobel, E. Briand, B. Combourieu, M.J. Salençon, J.F. Humbert and D. Latour. 2010. Spatiotemporal variations in microcystin concentrations and in the proportions of microcystin-producing cells in several Microcystis aeruginosa populations. Applied and Environmental Microbiology 76: 4750-4759. https://doi.org/10.1128/AEM.02531-09
  53. Sandrini, G., H.C.P. Matthijs, J.M.H. Verspagen, G. Muyzer and J. Huisman. 2014. Genetic diversity of inorganic carbon uptake systems causes variation in $CO_2$ response of the cyanobacterium Microcystis. ISME Journal 8: 589-600. https://doi.org/10.1038/ismej.2013.179
  54. Sandrini, G., R.P. Tann, J.M. Schuurmans, S.A. van Beusekom, H.C.P. Matthijs and J. Huisman. 2016. Diel variation in gene expression of the $CO_2$-concentrating mechanism during a harmful cyanobacterial bloom. Frontiers in Microbiology 7: article 551.
  55. Schatz, D., Y. Keren, O. Hadas, S. Carmeli, A. Sukenik and A. Kaplan. 2005. Ecological implications of the emergence of non-toxic subcultures from toxic Microcystis strains. Environmental Microbiology 7: 798-805. https://doi.org/10.1111/j.1462-2920.2005.00752.x
  56. Schindler, D.W. 1974. Eutrophication and recovery in experimental lakes: Implications for lake management. Science 184: 897-899. https://doi.org/10.1126/science.184.4139.897
  57. Schindler, D.W., R.E. Hecky, D.L. Findlay, M.P. Stainton, B.R. Parker, M.J. Paterson, K.G. Beaty, M. Lyng and S.E.M. Kasian. 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences 105: 11254-11258. https://doi.org/10.1073/pnas.0805108105
  58. Scott, J.T. and M.J. McCarthy. 2010. Nitrogen fixation may not balance the nitrogen pool in lakes over timescales relevant to eutrophication management. Limnology and Oceanography 55: 1265-1270. https://doi.org/10.4319/lo.2010.55.3.1265
  59. Shen, H., Y. Niu, P. Xie, M.I.N. Tao and X.I. Yang. 2011. Morphological and physiological changes in Microcystis aeruginosa as a result of interactions with heterotrophic bacteria. Freshwater Biology 56: 1065-1080. https://doi.org/10.1111/j.1365-2427.2010.02551.x
  60. Song, H., M. Lavoie, X. Fan, H. Tan, G. Liu, P. Xu, Z. Fu, H.W. Paerl and H. Qian. 2017. Allelopathic interactions of linoleic acid and nitric oxide increase the competitive ability of Microcystis aeruginosa. ISME Journal 11: 1865-1876. https://doi.org/10.1038/ismej.2017.45
  61. Srivastava, A., C.-Y. Ahn, R.K. Asthana, H.-G. Lee and H.-M. Oh. 2015. Status, alert system, and prediction of cyanobacterial bloom in South Korea. BioMed Research International 2015: Article ID 584696.
  62. Srivastava, A., G.-G. Choi, C.-Y. Ahn, H.-M. Oh, A.K. Ravi and R.K. Asthana. 2012. Dynamics of microcystin production and quantification of toxic Microcystis sp. using real-time PCR. Water Research 46: 817-827. https://doi.org/10.1016/j.watres.2011.11.056
  63. Srivastava, A., S. Singh, C.-Y. Ahn, H.-M. Oh and R.K. Asthana. 2013. Monitoring approaches for a toxic cyanobacterial bloom. Environmental Science & Technology 47: 8999-9013. https://doi.org/10.1021/es401245k
  64. Steffen, M.M., B.S. Belisle, S.B. Watson, G.L. Boyer, R.A. Bourbonniere and S.W. Wilhelm. 2015. Metatranscriptomic evidence for co-occurring top-down and bottom-up controls on toxic cyanobacterial communities. Applied and Environmental Microbiology 81: 3268-3276. https://doi.org/10.1128/AEM.04101-14
  65. Steffen, M.M., S.P. Dearth, B.D. Dill, Z. Li, K.M. Larsen, S.R. Campagna and S.W. Wilhelm. 2014. Nutrients drive transcriptional changes that maintain metabolic homeostasis but alter genome architecture in Microcystis. ISME Journal 8: 2080-2092. https://doi.org/10.1038/ismej.2014.78
  66. Straub, C., P. Quillardet, J. Vergalli, N.T. de Marsac and J.F. Humbert. 2011. A day in the life of Microcystis aeruginosa strain PCC 7806 as revealed by a transcriptomic analysis. PLoS ONE 6: e16208. https://doi.org/10.1371/journal.pone.0016208
  67. Suominen, S., V.S. Brauer, A. Rantala-Ylinen, K. Sivonen and T. Hiltunen. 2017. Competition between a toxic and a non-toxic Microcystis strain under constant and pulsed nitrogen and phosphorus supply. Aquatic Ecology 51: 117-130. https://doi.org/10.1007/s10452-016-9603-2
  68. Tan, W., Y. Liu, Z. Wu, S. Lin, G. Yu, B. Yu and R. Li. 2010. cpcBA-IGS as an effective marker to characterize Microcystis wesenbergii (Komarek) Komarek in Kondrateva (cyanobacteria). Harmful Algae 9: 607-612. https://doi.org/10.1016/j.hal.2010.04.011
  69. Tanabe, Y. and M.M. Watanabe. 2011. Local expansion of a panmictic lineage of water bloom-forming cyanobacterium Microcystis aeruginosa. PLoS ONE 6: e17085. https://doi.org/10.1371/journal.pone.0017085
  70. Tillett, D., E. Dittmann, M. Erhard, H. von Dohren, T. Borner and B.A. Neilan. 2000. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chemistry & Biology 7: 753-764. https://doi.org/10.1016/S1074-5521(00)00021-1
  71. Van de Waal, D.B., J.M.H. Verspagen, J.F. Finke, V. Vournazou, A.K. Immers, W.E.A. Kardinaal, L. Tonk, S. Becker, E. Van Donk, P.M. Visser and J. Huisman. 2011. Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising $CO_2$. ISME Journal 5: 1438-1450. https://doi.org/10.1038/ismej.2011.28
  72. Van Gremberghe, I., P. Vanormelingen, B. Vanelslander, K. Van Der Gucht, S. D’Hondt, L. De Meester and W. Vyverman. 2009. Genotype-dependent interactions among sympatric Microcystis strains mediated by Daphnia grazing. Oikos 118: 1647-1658. https://doi.org/10.1111/j.1600-0706.2009.17538.x
  73. Van Gremberghe, I., F. Leliaert, J. Mergeay, P. Vanormelingen, K. Van der Gucht, A.-E. Debeer, G. Lacerot, L. De Meester and W. Vyverman. 2011. Lack of phylogeographic structure in the freshwater cyanobacterium Microcystis aeruginosa suggests global dispersal. PLoS ONE 6: e19561. https://doi.org/10.1371/journal.pone.0019561
  74. Wang, W., H. Shen, P. Shi, J. Chen, L. Ni and P. Xie. 2016. Experimental evidence for the role of heterotrophic bacteria in the formation of Microcystis colonies. Journal of Applied Phycology 28: 1111-1123. https://doi.org/10.1007/s10811-015-0659-5
  75. Xu, S., Q. Sun, X. Zhou, X. Tan, M. Xiao, W. Zhu and M. Li. 2016. Polysaccharide biosynthesis-related genes explain phenotype-genotype correlation of Microcystis colonies in Meiliang Bay of Lake Taihu, China. Scientific Reports 6: 35551. https://doi.org/10.1038/srep35551
  76. Yang, Z., F. Kong, X. Shi and H. Cao. 2006. Morphological response of Microcystis aeruginosa to grazing by different sorts of zooplankton. Hydrobiologia 563: 225-230. https://doi.org/10.1007/s10750-005-0008-9
  77. Ye, W., X. Liu, J. Tan, D. Li and H. Yang. 2009. Diversity and dynamics of microcystin-producing cyanobacteria in China’s third largest lake, Lake Taihu. Harmful Algae 8: 637-644. https://doi.org/10.1016/j.hal.2008.10.010
  78. Yoshida, M., T. Yoshida, Y. Takashima, N. Hosoda and S. Hiroishi. 2007. Dynamics of microcystin-producing and non-microcystin-producing Microcystis populations is correlated with nitrate concentration in a Japanese lake. FEMS Microbiology Letters 266: 49-53. https://doi.org/10.1111/j.1574-6968.2006.00496.x
  79. Zhicong, W., D. Li, X. Cao, C. Song and Y. Zhou. 2015. Photosynthesis regulates succession of toxic and nontoxic strains in blooms of Microcystis (Cyanobacteria). Phycologia 54: 640-648. https://doi.org/10.2216/15-79.1
  80. Zhu, L., A. Zancarini, I. Louati, S. De Cesare, C. Duval, K. Tambosco, C. Bernard, D. Debroas, L. Song, J. Leloup and J.F. Humbert. 2016. Bacterial communities associated with four cyanobacterial genera display structural and functional differences: Evidence from an experimental approach. Frontiers in Microbiology 7: article 1662.
  81. Zilliges, Y., J.C. Kehr, S. Meissner, K. Ishida, S. Mikkat, M. Hagemann, A. Kaplan, T. Börner and E. Dittmann. 2011. The cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness of Microcystis under oxidative stress conditions. PLoS ONE 6: e17615. https://doi.org/10.1371/journal.pone.0017615