DOI QR코드

DOI QR Code

이미징기술을 활용한 코어규모의 다상유체 유동 특성화: 이산화탄소 지중저장 연구에의 적용

Use of an Imaging Technology for Characterizing Core-scale Multiphase Flow: Application to CO2 Geological Storage

  • 김구영 (한국지질자원연구원 전략기술연구본부 CO2지중저장연구단)
  • Kim, Kue-Young (Korea Institute of Geoscience and Mineral Resources, Climate Change Mitigation and Sustainability Division)
  • 투고 : 2018.01.11
  • 심사 : 2018.02.26
  • 발행 : 2018.03.31

초록

이미징 기술은 매질 자체의 구조특성 뿐만 아니라 유체의 유동특성을 분석하기 위해 공극규모, 코어규모, 그리고 중급규모에서 다양하게 활용되고 있다. 본 기술보고에서는 코어규모에서 유동실험과 이미징기술을 연계하여 균질매질, 균열매질, 그리고 불균질매질에서의 이산화탄소($CO_2$) 유동 특성과 함께 $CO_2$ 주입시 주입관정 주변에서 발생할 수 있는 염침전 현상, 균질매질과 균열매질에서의 모세관압 평가, 그리고 $CO_2$ 주입이 완료된 이후 나타나는 포획메커니즘 평가 등에 대해 살펴보았다. 이미징기술을 통해 코어내에서 시간에 따른 $CO_2$ 플룸을 이미지화 함으로써 유동특성을 분석할 수 있으며, 특히 균열이 포함된 매질과 불균질한 매질에서의 유동 및 저장특성을 평가할 수 있다.

Imaging technologies are applied at various geological scales including pore scale, core scale and intermediate scale in order to characterize pore space of rocks as well as to map the fluid distribution in porous media. This technical report presents experimental results using core-flooding apparatus suited with imaging technology. Three different core samples, that are homogeneous, fractured and heterogeneous cores, were used to assess the two-phase fluid migration behavior as $CO_2$ displaces resident brine. We show that imaging technology can be effective in characterizing salt-precipitation, capillary pressure and spatio-temporal variation of trapping mechanisms.

키워드

참고문헌

  1. Agartan, E., Trevisan, L., Cihan, A., Birkholzer, J., Zhou, Q., Illangasekare, T.H., 2015, Experimental study on effects of geologic heterogeneity in enhancing dissolution trapping of supercritical $CO_2$, Water Resources Research, 51, 1635-1648. https://doi.org/10.1002/2014WR015778
  2. Akbarabadi, M., Piri, M., 2013, Relative permeability hysteresis and permanent capillary trapping characteristics of supercritical $CO_2$/brine systems: an experimental study at reservoir conditions, Advances in Water Resources, 52, 190-206. https://doi.org/10.1016/j.advwatres.2012.06.014
  3. Armstrong, R., Porter, M., Wildenschild, D., 2012, Linking pore-scale interfacial curvature to column scale capillary pressure, Advances in Water Resources, 46, 55-62. https://doi.org/10.1016/j.advwatres.2012.05.009
  4. Bachu, S. and Bennion, B., 2008, Effects of in-situ conditions on relative permeability characteristics of $CO_2$-brine systems, Environmental Geology, 54, 1707-1722. https://doi.org/10.1007/s00254-007-0946-9
  5. Baumann, G., Henninges, J., De Lucia, M., 2014, Monitoring of saturation changes and salt precipitation during $CO_2$ injection using pulsed neutron-gamma logging at the Ketzin pilot site, International Journal of Greenhouse Gas Control, 28, 134-146. https://doi.org/10.1016/j.ijggc.2014.06.023
  6. Berg, S., Ott, H., Klapp, S.A., Schwing, A., Neiteler, R., Brussee, N., Makurat, A., Leu, L., Enzmann, F., Schwarz, J.-O., Kersten, M., Irvine, S., Stampanoni, M., 2013, Real-time 3-D imaging of Haines jumps in porous media flow, Proceedings of the National Academy of Sciences, 110, 3755-3759. https://doi.org/10.1073/pnas.1221373110
  7. Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., Pentland, C., 2013, Pore-scale imaging and modelling, Advances in Water Resources, 51, 197-216. https://doi.org/10.1016/j.advwatres.2012.03.003
  8. Cnudde, V. and Boone, M.N., 2013, High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications, Earth-Science Reviews, 123, 1-17. https://doi.org/10.1016/j.earscirev.2013.04.003
  9. Coles, M., Hazlett, R., Spanne, P., Soll, W., Muegge, E., Jones, K., 1998, Pore level imaging of fluid transport using synchrotron X-ray microtomography, Journal of Petroleum Science and Engineering, 19, 55-63. https://doi.org/10.1016/S0920-4105(97)00035-1
  10. Flannery, B., Deckman, H., Roberge, W., D'Amico, K., 1987, Three-dimensional X-ray microtomography, Science, 237, 1439-1444. https://doi.org/10.1126/science.237.4821.1439
  11. Giorgis, T., Carpita, M., Battistelli, A., 2007, Modeling of salt precipitation during the injection of dry $CO_2$ in a depleted gas reservoir, Energy Conversion and Management, 48, 1816-1826. https://doi.org/10.1016/j.enconman.2007.01.012
  12. Gouze, P., Luquot, L., 2011, X-ray microtomography characterization of porosity, permeability and reactive surface changes during dissolution, Journal of Contaminant Hydrology, 120-121, 45-55. https://doi.org/10.1016/j.jconhyd.2010.07.004
  13. Grude, S., Landro, M., Dvorkin, J., 2014, Pressure effects caused by $CO_2$ injection in the Tubaen Fm., the Snohvit field, International Journal of Greenhouse Gas Control, 27, 178-187. https://doi.org/10.1016/j.ijggc.2014.05.013
  14. Hingerl, F.F., Yang, F., Pini, R., Xiao, X., Toney, M.F., Liu, Y., Benson, S.M., 2016, Characterization of heterogeneity in the Heletz sandstone from core to pore scale and quantification of its impact on multi-phase flow, International Journal of Greenhouse Gas Control, 48, 69-83. https://doi.org/10.1016/j.ijggc.2015.12.037
  15. Iglauer, S., Paluszny A., Pentland, C.H., Blunt, M.J., 2011, Residual $CO_2$ imaged with X-ray micro-tomography. Geophysical Research Letters, 38, L21403.
  16. IPCC, 2005, Special report on carbon dioxide capture and storage. In: Metz B. et al., editors, Cambridge University Press, Cambridge, UK.
  17. Kim, K.-Y., Han, W.S., Oh, J., Kim, T., Kim, J.-C., 2012, Characteristics of salt-precipitation and the associated pressure build-up during $CO_2$ storage in saline aquifer, Transport in Porous Media, 92, 397-418. https://doi.org/10.1007/s11242-011-9909-4
  18. Krause, M., Perrine, J.-C. and Benson, S., 2011, Modeling permeability distributions in a sandstone core for history matching coreflood experiments, SPE Journal, 16, 768-777. https://doi.org/10.2118/126340-PA
  19. Krevor, S.C., Pini, R., Li, B., Benson, S.M., 2011, Capillary heterogeneity trapping of $CO_2$ in a sandstone rock at reservoir conditions, Geophysical Research Letter, 38, L15401.
  20. Krevor, S.C., Pini, R., Zuo, L., Benson, S.M., 2012, Relative permeability and trapping of $CO_2$ and water in sandstone rocks at reservoir conditions, Water Resources Research, 48, W02532.
  21. Krevor, S.C., Blunt, M., Benson, S.M., Pentland, C.H., Reynolds, C., Al-Menhali, A., Niu, B., 2015, Capillary trapping for geologic carbon dioxide storage - From pore scale physics to field scale implications, International Journal of Greenhouse Gas Control, 40, 221-237. https://doi.org/10.1016/j.ijggc.2015.04.006
  22. Li, B., Benson, S.M., 2015, Influence of small-scale heterogeneity on upward $CO_2$ plume migration in storage aquifers, Advances in Water Resources, 83, 389-404. https://doi.org/10.1016/j.advwatres.2015.07.010
  23. Manceau, J.C., Ma, J., Li, R., Audigane, P., Jiang, P.X., Xu, R.N., Tremosa, J., Lerouge, C., 2015, Two-phase flow properties of a sandstone rock for the $CO_2$/water system: Core-flooding experiments, and focus on impacts of mineralogical changes, Water Resources Research, 51, 2885-2900. https://doi.org/10.1002/2014WR015725
  24. Menke, H.P., Andrew, M.G., Blunt, M.J., Bijeljic, B., 2016, Reservoir condition imaging of reactive transport in heterogeneous carbonates using fast synchrotron tomography-Effect of initial pore structure and flow conditions, Chemical Geology, 428, 15-26. https://doi.org/10.1016/j.chemgeo.2016.02.030
  25. Michael, K., Golab, A., Shulakova, V., Ennis-King, J., Allinson, G., Sharma, S., Aiken, T., 2010, Geological storage of $CO_2$ in saline aquifers - a review of the experience from existing storage operations, International Journal of Greenhouse Gas Control, 4, 659-667. https://doi.org/10.1016/j.ijggc.2009.12.011
  26. Miri R., Hellevang, H., 2016. Salt precipitation during $CO_2$ storage - A review, International Journal of Greenhouse Gas Control, 51, 136-147. https://doi.org/10.1016/j.ijggc.2016.05.015
  27. Mitchell, J., Chandrasekera, T.C., Holland, D.J., Gladden, L.F. and Fordham, E.J., 2013, Magnetic resonance imaging in laboratory petrophysical core analysis, Physics Reports, 526. 165-225. https://doi.org/10.1016/j.physrep.2013.01.003
  28. Oh, J., Kim, K.-Y., Han, W.S., Kim, T., Kim, J.-C., Park, E., 2013, Experimental and numerical study on supercritical $CO_2$/brine transport in a fractured rock: Implications of mass transfer, capillary pressure and storage capacity, Advances in Water Resources, 62, 442-453. https://doi.org/10.1016/j.advwatres.2013.03.007
  29. Oh, J., Kim, K.-Y., Han, W.S., Park, E., Kim, J.-C., 2015, Migration behavior of supercritical and liquid $CO_2$ in a stratified system: Experiments and numerical simulations, Water Resources Research, 51, 7937-7958. https://doi.org/10.1002/2015WR017022
  30. Oh, J., Kim, K.-Y., Han, W.S., Park, E., 2017, Transport of $CO_2$ in heterogeneous porous media: Spatio-temporal variation of trapping mechanisms, International Journal of Greenhouse Gas Control, 57, 52-62. https://doi.org/10.1016/j.ijggc.2016.12.006
  31. Pentland, C.H., El-Maghraby, R., Iglauer, S., Blunt, M.J., 2011, Measurment of the capillary trapping of super-critical carbon dioxide in Berea sandstone, Geophysical Research Letter, 38, L06401.
  32. Pini, R., Krevor, S.C.M., Benson, S.M., 2012, Capillary pressure and heterogeneity for the $CO_2$/water system in sandstone rocks at reservoir conditions. Advances in Water Resources, 38, 48-59. https://doi.org/10.1016/j.advwatres.2011.12.007
  33. Pini, R., Benson, S.M., 2013, Characterization and scaling of mesoscale heterogeneities in sandstones. Geophysical Research Letters, 40, 3903-3908. https://doi.org/10.1002/grl.50756
  34. Prather, C.A., Bray, J.M., Seymour, J.D., Codd, S.L., 2016, NMR study comparing capillary trapping in Berea sandstone of air, carbon dioxide, and supercritical carbon dioxide after imbibition of water, Water Resources Research, 52, 713-724. https://doi.org/10.1002/2015WR017547
  35. Pruess, K., Muller, N., 2009, Formation dry-out from $CO_2$ injection into saline aquifers: 1.Effects of solids precipitation and their mitigation. Water Resourecs Research, 45, W03402.
  36. Span, R., Wagner, W., 1996, A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100K at pressures up to 800 MPa, Journal of Physical and Chemical Reference Data, 25, 1509-1596. https://doi.org/10.1063/1.555991
  37. Trevisan, L., Pini, R., Cihan, A., Birkholzer, J.T., Zhou, Q., Gonzalez-Nicolas, A., Illangasekare, T.H., 2017, Imaging and quantification of spreading and trapping of carbon dioxide in saline aquifers using meter-scale laboratory experiments. Water Resources Research, 53, 485-502. https://doi.org/10.1002/2016WR019749
  38. Valvatne, P., Blunt, M., 2004, Predictive pore-scale modeling of two-phase flow in mixed wet media. Water Resources Research, 40, W07406.
  39. Wildenschild, D., Hopmans, J.W., Vaz, C.M.P., Rivers, M.L., Rikard, D., Christensen, B.S.B., 2002, Using X-ray computed tomography in hydrology: systems, resolution, and limitations. Journal of Hydrology, 267, 285-297. https://doi.org/10.1016/S0022-1694(02)00157-9
  40. Wildenschild, D., Sheppard, A.P., 2013, X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Advances in Water Resources, 51, 217-246. https://doi.org/10.1016/j.advwatres.2012.07.018