Lower Extremity Stiffness Characteristics in Running and Jumping: Methodology and Implications for Athletic Performance

  • Received : 2018.03.15
  • Accepted : 2018.03.21
  • Published : 2018.03.31


Objective: The human body is often modelled as a spring-mass system. Lower extremity stiffness has been considered to be one of key factor in the performance enhancement of running, jumping, and hopping involved sports activities. There are several different classification of lower extremity stiffness consisting of vertical stiffness, leg stiffness, joint stiffness, as well as muscle and tendon stiffness. The primary purpose of this paper was to review the literature and describe different stiffness models and discuss applications of stiffness models while engaging in sports activities. In addition, this paper provided a current update of the lower extremity literature as it investigates the relationships between lower extremity stiffness and both functional performance and injury. Summary: Because various methods for measuring lower extremity stiffness are existing, measurements should always be accompanied by a detailed description including type of stiffness, testing method and calculation method. Moreover, investigator should be cautious when comparing lower extremity stiffness from different methods. Some evidence highlights that optimal degree of lower extremity stiffness is required for successful athletic performance. However, the actual magnitude of stiffness required to optimize performance is relatively unexplored. Direct relationship between lower extremity stiffness and lower extremity injuries has not clearly been established yet. Overall, high stiffness is potentially associate risk factors of lower extremity injuries although some of the evidence is controversial. Prospective injures studies are necessary to confirm this relationship. Moreover, further biomechanical and physiological investigation is needed to identify the optimal regulation of the lower limb stiffness behavior and its impact on athletic performance and lower limb injuries.


  1. Arampatzis, A., Brüggemann, G. P. & Metzler, V. (1999). The effect of speed on leg stiffness and joint kinetics in human running. Journal of Biomechanics, 32(12), 1349-1353.
  2. Bret, C., Rahmani, A., Dufour, A. B., Messonnier, L. & Lacour, J. R. (2002). Leg strength and stiffness as ability factors in 100 m sprint running. Journal of Sports Medicine and Physical Fitness, 42(3), 274-281.
  3. Brughelli, M. & Cronin, J. (2008a). A review of research on the mechanical stiffness in running and jumping: Methodology and implications. Scandinavian Journal of Medicine and Science in Sports, 18(4), 417-426.
  4. Brughelli, M. & Cronin, J. (2008b). Influence of running velocity on vertical, leg and joint stiffness: Modelling and recommendations for future research. Sports Medicine, 38(8), 647-657.
  5. Burgess, K. E., Connick, M. J., Graham-Smith, P. & Pearson, S. J. (2007). Plyometric vs. isometric training influences on tendon properties and muscle output. Journal of Strength and Conditioning Research, 21(3), 986-989.
  6. Butler, R. J., Crowell, H. P. & Davis, I. M. (2003). Lower extremity stiffness: implications for performance and injury. Clinical Biomechanics, 18(6), 511-517.
  7. Cavagna, G. A. (1975). Force platforms as ergometers. Journal of Applied Physiology, 39(1), 174-179.
  8. Cavagna, G. A., Franzetti, P., Heglund, N. C. & Willems, P. (1988). The determinants of the step frequency in running, trotting and hopping in man and other vertebrates. The Journal of Physiology, 399, 81-92.
  9. Cavagna, G. A., Heglund, N. C. & Willems, P. A. (2005). Effect of an increase in gravity on the power output and the rebound of the body in human running. The Journal of Experimental Biology, 208(Pt 12), 2333-2346.
  10. Cavagna, G. A., Komarek, L. & Mazzoleni, S. (1971). The mechanics of sprint running. The Journal of Physiology, 217(3), 709-721.
  11. Chelly, S. M. & Denis, C. (2001). Leg power and hopping stiffness: relationship with sprint running performance. Medicine and Science in Sports and Exercise, 33(2), 326-333.
  12. Dalleau, G., Belli, A., Bourdin, M. & Lacour, J. R. (1998). The spring-mass model and the energy cost of treadmill running. European Journal of Applied Physiology and Occupational Physiology, 77(3), 257-263.
  13. Dubose, D. F., Herman, D. C., Jones, D. L., Tillman, S. M., Clugston, J. R., Pass, A., ... & Chmielewski, T. L. (2017). Lower Extremity Stiffness Changes after Concussion in Collegiate Football Players. Medicine and Science in Sports and Exercise, 49(1), 167-172.
  14. Farley, C. T. & Gonzalez, O. (1996). Leg stiffness and stride frequency in human running. Journal of Biomechanics, 29(2), 181-186.
  15. Farley, C. T., Houdijk, H. H., Van Strien, C. & Louie, M. (1998). Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses. Journal of Applied Physiology (Bethesda, Md. : 1985), 85(3), 1044-1055.
  16. Grimmer, S., Ernst, M., Gunther, M. & Blickhan, R. (2008). Running on uneven ground: leg adjustment to vertical steps and self-stability. The Journal of Experimental Biology, 211(Pt 18), 2989-3000.
  17. Gunther, M. & Blickhan, R. (2002). Joint stiffness of the ankle and the knee in running. Journal of Biomechanics, 35(11), 1459-1474.
  18. Harrison, A. J., Keane, S. P. & Coglan, J. (2004). Force-Velocity Relationship and Stretch-Shortening Cycle Function in Sprint and Endurance Athletes. The Journal of Strength and Conditioning Research, 18(3), 473.
  19. Hebert-Losier, K. & Eriksson, A. (2014). Leg stiffness measures depend on computational method. Journal of Biomechanics, 47(1), 115-121.
  20. Hobara, H., Inoue, K., Gomi, K., Sakamoto, M., Muraoka, T., Iso, S. & Kanosue, K. (2010). Continuous change in spring-mass characteristics during a 400 m sprint. Journal of Science and Medicine in Sport, 13(2), 256-261.
  21. Hobara, H., Kanosue, K. & Suzuki, S. (2007). Changes in muscle activity with increase in leg stiffness during hopping. Neuroscience Letters, 418(1), 55-59.
  22. Hobara, H., Kimura, K., Omuro, K., Gomi, K., Muraoka, T., Iso, S. & Kanosue, K. (2008). Determinants of difference in leg stiffness between endurance-and power-trained athletes. Journal of Biomechanics, 41(3), 506-514.
  23. Kubo, K., Ikebukuro, T., Maki, A., Yata, H. & Tsunoda, N. (2012). Time course of changes in the human Achilles tendon properties and metabolism during training and detraining in vivo. European Journal of Applied Physiology, 112(7), 2679-2691.
  24. Kubo, K., Kawakami, Y. & Fukunaga, T. (1999). Influence of elastic properties of tendon structures on jump performance in humans. Journal of Applied Physiology (Bethesda, Md. : 1985), 87(6), 2090 -2096.
  25. Kubo, K., Morimoto, M., Komuro, T., Yata, H., Tsunoda, N., Kanehisa, H. & Fukunaga, T. (2007). Effects of plyometric and weight training on muscle-tendon complex and jump performance. Medicine and Science in Sports and Exercise, 39(10), 1801-1810.
  26. Kuitunen, S., Komi, P. V. & Kyrolainen, H. (2002). Knee and ankle joint stiffness in sprint running. Medicine and Science in Sports and Exercise, 34(1), 166-173.
  27. Lorimer, A. V. & Hume, P. A. (2016, December 18). Stiffness as a Risk Factor for Achilles Tendon Injury in Running Athletes. Sports Medicine.
  28. Maloney, S. J., Richards, J., Nixon, D. G. D., Harvey, L. J. & Fletcher, I. M. (2016). Do stiffness and asymmetries predict change of direction performance? Journal of Sports Sciences, 35(6), 1-10.
  29. Maquirriain, J. (2012). Leg Stiffness Changes in Athletes with Achilles Tendinopathy. International Journal of Sports Medicine, 33(7), 567-571.
  30. McMahon, T. A. & Cheng, G. C. (1990). The mechanics of running: how does stiffness couple with speed? Journal of Biomechanics, 23 Suppl 1, 65-78.
  31. McMahon, T. A., Valiant, G. & Frederick, E. C. (1987). Groucho running. Journal of Applied Physiology (Bethesda, Md. : 1985), 62(6), 2326-2337.
  32. Morin, J. B., Dalleau, G., Kyrolanen, H., Jeannin, T. & Belli, A. (2005). A simple method for measuring stiffness during running. Journal of Applied Biomechanics, 21(2), 167-180.
  33. Morin, J. B., Jeannin, T., Chevallier, B. & Belli, A. (2006). Spring-mass model characteristics during sprint running: Correlation with performance and fatigue-induced changes. International Journal of Sports Medicine, 27(2), 158-165.
  34. Pousson, M., Van Hoecke, J. & Goubel, F. (1990). Changes in elastic characteristics of human muscle induced by eccentric exercise. Journal of Biomechanics, 23(4), 343-348.
  35. Pruyn, E. C., Watsford, M. L., Murphy, A. J., Pine, M. J., Spurrs, R. W., Cameron, M. L. & Johnston, R. J. (2012). Relationship between leg stiffness and lower body injuries in professional Australian football. Journal of Sports Sciences, 30(1), 71-78.
  36. Rapoport, S., Mizrahi, J., Kimmel, E., Verbitsky, O. & Isakov, E. (2003). Constant and variable stiffness and damping of the leg joints in human hopping. Journal of Biomechanical Engineering, 125(4), 507-514.
  37. Rodriguez, E. C. P., Watsford, M. L., Bower, R. G. & Murphy, A. J. (2017). The relationship between lower body stiffness and injury incidence in female netballers. SportS Biomechanics, 1-13.
  38. Rogers, S. A., Whatman, C. S., Pearson, S. N. & Kilding, A. E. (2017). Assessments of Mechanical Stiffness and Relationships to Performance Determinants in Middle-Distance Runners. International Journal of Sports Physiology and Performance, 12(10), 1329-1334.
  39. Ryu, J. H. & Murray, A. A. (2016). The Relationship between Vertical Stiffness in Maximal and Sub-Maximal Hopping Tests and Running Performance in Young Middle-Distance Runners: A Pilot Study. In International Conference on Biomechanics in Sports. Tsukuba, Japan.
  40. Serpell, B. G., Ball, N. B., Scarvell, J. M. & Smith, P. N. (2012). A review of models of vertical, leg, and knee stiffness in adults for running, jumping or hopping tasks. Journal of Sports Sciences, 30(13), 1347-1363.
  41. Serpell, B. G., Scarvell, J. M., Ball, N. B. & Smith, P. N. (2014). Vertical stiffness and muscle strain in professional Australian football. Journal of Sports Sciences, 32(20), 1924-1930.
  42. Serpell, B. G., Scarvell, J. M., Pickering, M. R., Ball, N. B., Perriman, D., Warmenhoven, J. & Smith, P. N. (2016). Vertical stiffness is not related to anterior cruciate ligament elongation in professional rugby union players. BMJ Open Sport & Exercise Medicine, 2(1), e000150.
  43. Spurrs, R. W., Murphy, A. J. & Watsford, M. L. (2003). The effect of plyometric training on distance running performance. European Journal of Applied Physiology, 89(1), 1-7.
  44. Stafilidis, S. & Arampatzis, A. (2007). Track compliance does not affect sprinting performance. Journal of Sports Sciences, 25(13), 1479-1490.
  45. Stefanyshyn, D. J. & Nigg, B. M. (1998). Dynamic Angular Stiffness of the Ankle Joint during Running and Sprinting. Journal of Applied Biomechanics, 14(3), 292-299.
  46. Watsford, M. L., Murphy, A. J., McLachlan, K. A., Bryant, A. L., Cameron, M. L., Crossley, K. M. & Makdissi, M. (2010). A Prospective Study of the Relationship Between Lower Body Stiffness and Hamstring Injury in Professional Australian Rules Footballers. The American Journal of Sports Medicine, 38(10), 2058-2064.
  47. Watts, A. S., Coleman, I. & Nevill, A. (2012). The changing shape characteristics associated with success in world-class sprinters. Journal of Sports Sciences, 30(11), 1085-1095.
  48. Wilson, G. J., Wood, G. A. & Elliott, B. C. (1991). Optimal stiffness of series elastic component in a stretch-shorten cycle activity. Journal of Applied Physiology (Bethesda, Md. : 1985), 70(2), 825-833.