DOI QR코드

DOI QR Code

Numerical Study of a Novel Bi-focal Metallic Fresnel Zone Plate Having Shallow Depth-of-field Characteristics

  • Kim, Jinseob (Laser Engineering and Applications Laboratory, Department of Electrical and Computer Engineering, Seoul National University) ;
  • Kim, Juhwan (Laser Engineering and Applications Laboratory, Department of Electrical and Computer Engineering, Seoul National University) ;
  • Na, Jeongkyun (Laser Engineering and Applications Laboratory, Department of Electrical and Computer Engineering, Seoul National University) ;
  • Jeong, Yoonchan (Laser Engineering and Applications Laboratory, Department of Electrical and Computer Engineering, Seoul National University)
  • Received : 2018.03.15
  • Accepted : 2018.03.20
  • Published : 2018.04.25

Abstract

We propose a novel bi-focal metallic Fresnel zone plate (MFZP) with shallow depth-of-field (DOF) characteristics. We design the specific annular slit patterns, exploiting the phase-selection-rule method along with the particle swarm optimization algorithm, which we have recently proposed. We numerically investigate the novel characteristics of the bi-focal MFZP in comparison with those of another bi-focal MFZP having equivalent functionality but designed by the conventional multi-zone method. We verify that whilst both bi-focal MFZPs can produce dual focal spots at $15{\mu}m$ and $25{\mu}m$ away from the MFZP plane, the former exhibits characteristics superior to those of the latter from the viewpoint of axial resolution, including the axial side lobe suppression and axial DOF shallowness. We expect the proposed bi-focal MFZP can readily be fabricated with electron-beam evaporation and focused-ion-beam processes and further be exploited for various applications, such as laser micro-machining, optical trapping, biochemical sensing, confocal sensing, etc.

Keywords

References

  1. A. J. Fresnel, "Calcul de l'intensite de la lumiere au centre de l'ombre d'un ecran et d'une ouverture circulaires eclairee par une point radieux," Oeuvres d'Augustin Fresnel 1, 365-372 (1866).
  2. M. Young, "Zone plates and their aberrations," J. Opt Soc Am. 62, 972-976 (1972). https://doi.org/10.1364/JOSA.62.000972
  3. G. Saavedra, W. D. Furlan, and J. A. Monsoriu, "Fractal zone plates." Opt. Lett. 28, 971-973 (2003). https://doi.org/10.1364/OL.28.000971
  4. J. Jia, C. Xie, M. Liu, and L. Wan, "A super-resolution Fresnel zone plate and photon sieve," Opt. Lasers Eng. 48, 760-765 (2010). https://doi.org/10.1016/j.optlaseng.2010.03.007
  5. R. S. R. Ribeiro, P. Dahal, A. Guerreiro, P. A. Jorge, and J. Viegas, "Fabrication of Fresnel plates on optical fibres by FIB milling for optical trapping, manipulation and detection of single cells," Sci. Rep. 7, 4485 (2017). https://doi.org/10.1038/s41598-017-04490-2
  6. H. Kim, H. An, J. Kim, S. Lee, K. Park, S. Lee, S. Hong, L. A. Vazquez-Zuniga, S. Y. Lee, B. Lee, and Y. Jeong, "Corrugation-assisted metal-coated angled fiber facet for wavelength-dependent off-axis directional beaming," Opt. Express 25, 8366-8385 (2017). https://doi.org/10.1364/OE.25.008366
  7. H. Kim, J. Kim, H. An, Y. Lee, G. Y. Lee, J. Na, K. Park, S. Lee, S. Y. Lee, B. Lee, and Y. Jeong, "Metallic Fresnel zone plate implemented on an optical fiber facet for super-variable focusing of light," Opt. Express 25, 30290-30303 (2017). https://doi.org/10.1364/OE.25.030290
  8. M. J. Simpson and A. G. Michette. "Imaging properties of modified Fresnel zone plates," Opt. Acta 31, 403-413 (1984). https://doi.org/10.1080/713821522
  9. J. A. Monsoriu, A. Calatayud, L. Remon, W. D. Furlan, G. Saavedra, and P. Andres, "Bifocal Fibonacci diffractive lenses," IEEE Photon. J. 5, 3400106 (2013). https://doi.org/10.1109/JPHOT.2013.2248707
  10. V. Ferrando, F. Giménez, W. D. Furlan, and J. A. Monsoriu, "Bifractal focusing and imaging properties of Thue-Morse Zone Plates," Optics Express 23, 19846-19853 (2015). https://doi.org/10.1364/OE.23.019846
  11. Q. Zhang, J. Wang, M. Wang, J. Bu, S. Zhu, B. Z. Gao, and X. Yuan, "Depth of focus enhancement of a modified imaging quasi-fractal zone plate," Opt. Laser Technol. 44, 2140-2144 (2012). https://doi.org/10.1016/j.optlastec.2012.03.012
  12. Q. Q. Zhang, J. G. Wang, M. W. Wang, J. Bu, S. W. Zhu, R. Wang, B. Z. Gao, and X. C. Yuan, "A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography," J. Opt. 13, 055301 (2011). https://doi.org/10.1088/2040-8978/13/5/055301
  13. J. Huang, M. Yuichi, and F. Yamamoto, "Shallow DOF-based particle tracking velocimetry applied to horizontal bubbly wall turbulence," Flow Meas. Instrum. 19, 93-105 (2008). https://doi.org/10.1016/j.flowmeasinst.2007.10.003
  14. K. Venkatakrishnan and B. Tan, "Interconnect microvia drilling with a radially polarized laser beam," J. Micromech. Microeng. 16, 2603 (2006). https://doi.org/10.1088/0960-1317/16/12/013
  15. J. Kim, H. Kim, K. Park, and Y. Jeong, "Simulation of metallic Fresnel zone plates for axial bi-focusing," in Proc. The 24th Conference on Optoelectronics and Optical Communications (Busan, Korea, June 2017), WP-G-1.
  16. G. Lerosey, J. De Rosny, A. Tourin, A. Derode, G. Montaldo, and M. Fink, "Time reversal of electromagnetic waves," Phys. Rev. Lett. 92, 193904 (2004). https://doi.org/10.1103/PhysRevLett.92.193904
  17. J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proc. IEEE International Conference on Neural Networks. IV. (Perth, WA, Australia, 27 Nov.-1 Dec. 1995), pp. 1942-1948.
  18. P. Pepeljugoski, M. J. Hackert, J. S. Abbott, S. E. Swanson, S. E. Golowich, A. J. Ritger, P. Kolesar, Y. C. Chen, and P. Pleunis, "Development of system specification for laser-optimized 50-µm multimode fiber for multigigabit short-wavelength LANs," J. Lightwave Technol. 21, 1256 (2003). https://doi.org/10.1109/JLT.2003.811321
  19. P. Sillard, D. Molin, M. Bigot-Astruc, A. Amezcua-Correa, K. de Jongh, and F. Achten, "$50\;{\mu}m$ multimode fibers for mode division multiplexing," J. Lightwave Technol. 34, 1672-1677 (2016). https://doi.org/10.1109/JLT.2015.2507442
  20. A. S. Kurkov, E. M. Sholokhov, and Y. E. Sadovnikova, "All-fiber supercontinuum source in the range of 1550-2400 nm based on telecommunication multimode fiber," Laser Phys. Lett. 8, 598 (2011). https://doi.org/10.1002/lapl.201110037
  21. R. S. R. Ribeiro, P. Dahal, A. Guerreiro, P. A. Jorge, and J. Viegas, "Fabrication of Fresnel plates on optical fibres by FIB milling for optical trapping, manipulation and detection of single cells," Sci. Rep. 7, 4485 (2017). https://doi.org/10.1038/s41598-017-04490-2
  22. E. J. R. Vesseur, R. De Waele, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, "Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling," Appl. Phys. Lett. 92, 083110 (2008). https://doi.org/10.1063/1.2885344
  23. M. H. Horman and H. H. M. Chau, "Zone plate theory based on holography," Appl. Opt. 6, 317-322 (1967). https://doi.org/10.1364/AO.6.000317
  24. H. H. M. Chau, "Zone plates produced optically," Appl. Opt. 8, 1209-1211 (1969). https://doi.org/10.1364/AO.8.001209