DOI QR코드

DOI QR Code

Periodically Poled BaTiO3: An Excellent Crystal for Terahertz Wave Generation by Cascaded Difference-frequency Generation

  • Li, Zhongyang (College of Electric Power, North China University of Water Resources and Electric Power) ;
  • Yuan, Bin (College of Electric Power, North China University of Water Resources and Electric Power) ;
  • Wang, Silei (College of Electric Power, North China University of Water Resources and Electric Power) ;
  • Wang, Mengtao (College of Electric Power, North China University of Water Resources and Electric Power) ;
  • Bing, Pibin (College of Electric Power, North China University of Water Resources and Electric Power)
  • Received : 2017.11.25
  • Accepted : 2018.01.25
  • Published : 2018.04.25

Abstract

Terahertz (THz) wave generation by periodically poled $BaTiO_3$ (PPBT) with a quasi-phase-matching (QPM) scheme based on cascaded difference-frequency generation (DFG) is theoretically analyzed. The cascaded DFG processes comprise cascaded Stokes and anti-Stokes processes. The calculated results indicate that the cascaded Stokes processes are stronger than the cascaded anti-Stokes processes. Compared to a noncascaded Stokes process, THz intensities from $20^{th}$-order cascaded Stokes processes increase by a factor of 30. THz waves with a maximum intensity of $0.37MW/mm^2$ can be generated by $20^{th}$-order cascaded DFG processes when the optical intensity is $10MW/mm^2$, corresponding to a quantum conversion efficiency of 1033%. The high quantum conversion efficiency of 1033% exceeds the Manley-Rowe limit, which indicates that PPBT is an excellent crystal for THz wave generation via cascaded DFG.

Keywords

References

  1. Y. J. Ding, "Progress in terahertz sources based on difference-frequency generation [Invited]," J. Opt. Soc. Am. B 31, 2696-2711 (2014). https://doi.org/10.1364/JOSAB.31.002696
  2. A. Majkic, M. Zgonik, A. Petelin, M. Jazbinsek, B. Ruiz, C. Medrano, and P. Gunter, "Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1," Appl. Phys. Lett. 105, 141115 (2014). https://doi.org/10.1063/1.4897639
  3. B. Dolasinski, P. E. Powers, J. W. Haus, and Adam Cooney, "Tunable narrow band difference frequency THz wave generation in DAST via dual seed PPLN OPG," Opt. Express 23, 3669-3680 (2015). https://doi.org/10.1364/OE.23.003669
  4. K. Saito, T. Tanabe, and Y. Oyama, "Design of a GaP/Si composite waveguide for CW terahertz wave generation via difference frequency mixing," Appl. Opt. 53, 3587-3592 (2014). https://doi.org/10.1364/AO.53.003587
  5. K. Ravi, M. Hemmer, G. Cirmi, F. Reichert, D. N. Schimpf, O. D. Mücke, and F. X. Kartner, "Cascaded parametric amplification for highly efficient terahertz generation," Opt. lett. 41, 3806-3809 (2016). https://doi.org/10.1364/OL.41.003806
  6. P. Liu, D. Xu, H. Yu, H. Zhang, Z. Li, K. Zhong, Y. Wang, and J. Yao, "Coupled-mode theory for Cherenkov-type guided-wave terahertz generation via cascaded difference frequency generation," J. Lightw. Technol. 31, 2508-2514 (2013). https://doi.org/10.1109/JLT.2013.2268876
  7. A. J. Lee and H. M. Pask, "Cascaded stimulated polariton scattering in a $Mg:LiNbO_{3}$ terahertz laser," Opt. Express 23, 8687-8698 (2015). https://doi.org/10.1364/OE.23.008687
  8. K. Saito, T. Tanabe, and Y. Oyama, "Cascaded terahertz-wave generation efficiency in excess of the Manley-Rowe limit using a cavity phase-matched optical parametric oscillator," J. Opt. Soc. Am. B 32, 617-621 (2015). https://doi.org/10.1364/JOSAB.32.000617
  9. G. Cirmi, M. Hemmer, K. Ravi, F. Reichert, L. E. Zapata, A. L. Calendron, H. Cankaya, F. Ahr, O. D. Mucke, and F. X. Kartner, "Cascaded second-order processes for the efficient generation of narrowband terahertz radiation," J. Phys. B: At., Mol. Opt. Phys. 50, 044002 (2017). https://doi.org/10.1088/1361-6455/aa5405
  10. W. Shi and Y. J. Ding, "Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide," Appl. Phys. Lett. 83, 848-850 (2003). https://doi.org/10.1063/1.1596730
  11. W. Shi and Y. J. Ding, "Generation of backward terahertz waves in GaSe crystals," Opt. Lett. 30, 1861-1863 (2005). https://doi.org/10.1364/OL.30.001861
  12. H. Uchida, S. R. Tripathi, K. Suizu, T. Shibuya, T. Osumi, and K. Kawase, "Widely tunable broadband terahertz radiation generation using a configurationally locked polyene 2-[3-(4-hydroxystyryl)-5, 5-dimethylcyclohex-2-enylidene] malononitrile crystal via difference frequency generation," Appl. Phys. B 111, 489-493 (2013). https://doi.org/10.1007/s00340-013-5362-0
  13. K. L. Vodopyanov, "Optical THz-wave generation with periodically-inverted GaAs," Laser Photon. Rev. 2, 11-15 (2008). https://doi.org/10.1002/lpor.200710028
  14. T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, "Tunable THz wave generation in the 3- to 7-THz region from GaP," Appl. Phys. Lett. 83, 237-239 (2003). https://doi.org/10.1063/1.1592889
  15. T. Taniuchi and H. Nakanishi, "Continuously tunable tera-hertz-wave generation in GaP crystal by collinear difference frequency mixing," Electron. Lett. 40, 327-328 (2004). https://doi.org/10.1049/el:20040210
  16. Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, "Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled $LiNbO_{3}$ crystal," Appl. Phys. Lett. 81, 3323-3325 (2002). https://doi.org/10.1063/1.1518779
  17. Y. Jiang, Y. J. Ding, and I. B. Zotova, "Power scaling of widely-tunable monochromatic terahertz radiation by stacking high-resistivity GaP plates," Appl. Phys. Lett. 96, 031101 (2010). https://doi.org/10.1063/1.3292585
  18. Y. Jiang, Y. J. Ding, and I. B. Zotova, "Power scaling of coherent terahertz pulses by stacking GaAs wafers," Appl. Phys. Lett. 93, 241102 (2008). https://doi.org/10.1063/1.3049592
  19. H. Jang, A. Viotti, G. Strömqvist, A. Zukauskas, C. Canalias, and V. Pasiskevicius, "Counter-propagating parametric interaction with phonon-polaritons in periodically poled $KTiOPO_{4}$," Opt. Express 25, 2677-2686 (2017). https://doi.org/10.1364/OE.25.002677
  20. D. E. Zelmon, D. L. Small, and P. Schunemann, "Refractive index measurements of barium titanate from .4 to 5.0 microns and implications for periodically poled frequency conversion devices," MRS Online Proc. Libr. Arch. 484, 537-541 (1997). https://doi.org/10.1557/PROC-484-537
  21. D. N. Nikogosyan, Nonlinear optical crystals: a complete survey (Springer Science & Business Media, 2006).
  22. T. F. Boggess, J. O. White, and G. C. Valley, "Two-photon absorption and anisotropic transient energy transfer in $BaTiO_{3}$ with 1-psec excitation," J. Opt. Soc. Am. B 7, 2255-2258 (1990). https://doi.org/10.1364/JOSAB.7.002255
  23. A. Pinczuk, W. Taylor, E. Burstein, and I. Lefkowitz, "The Raman spectrum of $BaTiO_{3}$," Solid State Commun. 5, 429-433 (1967). https://doi.org/10.1016/0038-1098(67)90791-0
  24. A. Scalabrin, A. S. Chaves, D. S. Shim, and S. P. S. Porto, "Temperature dependence of the $A_{2}$ and E optical phonons in $BaTiO_{3}$," Phys. Status Solidi B 79, 731-742 (1977). https://doi.org/10.1002/pssb.2220790240
  25. J. A. Sanjurjo, R. S. Katiyar, and S. P. S. Porto, "Temperature dependence of dipolar modes in ferroeiectric $BaTiO_{3}$ by infrared studies," Phys. Rev. B 22, 2396-2403 (1980). https://doi.org/10.1103/PhysRevB.22.2396
  26. S. S. Sussman, "Tunable light scattering from transverse optical modes in lithium niobate," Stanford University, Stanford, California, Microwave Laboratory Report No. 1851 (1970).
  27. S. D. Setzler, P. G. Schunemann, T. M. Pollak, and L. A. Pomeranz, "Periodically poled Barium Titanate as a new nonlinear optical material," Adv. Solid-State Lasers, Trends Opt. Photonics Ser. MD1 (1999).
  28. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, 1988), Chapter 16.
  29. W. D. Johnston and I. P. Kaminow, "Contributions to optical nonlinearity in GaAs as determined from Raman scattering efficiencies," Phys. Rev. 188, 1209-1211 (1969). https://doi.org/10.1103/PhysRev.188.1209
  30. A. R. Johnston and J. M. Weingart, "Determination of the low-frequency linear electro-optic effect in tetragonal $BaTiO_{3}$," J. Opt. Soc. Am. 55, 828-834 (1965). https://doi.org/10.1364/JOSA.55.000828
  31. I. Shoji, T. Kondo, and R. Ito, "Second-order nonlinear susceptibilities of various dielectric and semiconductor materials," Opt. Quantum Electron. 34, 797-833 (2002). https://doi.org/10.1023/A:1016545417478
  32. G. D. Boyd, T. J. Bridges, M. A. Pollack, and E. H. Turner, "Microwave nonlinear susceptibilities due to electronic and ionic anharmonicities in acentric crystals," Phys. Rev. Lett. 26, 387-390 (1971). https://doi.org/10.1103/PhysRevLett.26.387