DOI QR코드

DOI QR Code

Quantum Computing Performance Analysis of the Ground-State Estimation Problem

기저상태계산 문제에 대한 양자컴퓨팅의 성능 분석

  • 최병수 (한국전자통신연구원 초연결통신연구소 초연결원천연구본부 양자창의연구실)
  • Received : 2018.02.18
  • Accepted : 2018.04.02
  • Published : 2018.04.25

Abstract

As the quantum volume increases, we are about to use quantum computers for real applications. Therefore, it is necessary to investigate how much quantum-computational gain is achievable in the near future. In this work, we analyze a fault-tolerant quantum computing method for near-term applications such as the ground-state estimation problem. Based on quantitative analysis, we find that it is still necessary to improve the current fault-tolerant quantum computing. This work also discusses which parts should be improved to improve quantum computing performance.

최근 양자프로세서와 관련한 연구개발이 본격화되면서 실제 수행가능 한 양자계산량도 계속 증가하고 있다. 이에 양자컴퓨팅은 본격적으로 활용화단계로 진입하고 있다고 볼 수 있다. 다만 아직은 큰 규모의 양자컴퓨팅이 가능하지 않기 때문에 작은 규모의 문제이지만 고전컴퓨팅으로는 해결하기 힘들고, 양자컴퓨팅으로는 효과적으로 계산할 수 있는 문제를 대상으로 하고 있다. 본 연구에서는 이와 관련하여 양자컴퓨터를 이용한 작은 크기의 양자시뮬레이션분야의 실질적인 계산성능에 대한 정량적인 분석 결과를 보고한다. 분석결과 현재까지의 결함허용 기반 양자컴퓨팅은 양자계산성능의 측면에서 다양한 문제점을 갖고 있음을 확인하였다. 본 연구에서는 이와 관련하여 향후 수행해야 할 연구개발 내용을 정리하였다.

Keywords

References

  1. A. Trabesinger, "Quantum simulation," Nat. Phys. 8, 263 (2012). https://doi.org/10.1038/nphys2258
  2. M. A. Nielsen and I. L. Chuang, "Quantum computation and quantum information," Cambridge Press (2011).
  3. J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik, "Simulation of electronic structure hamiltonians using quantum computers," Mol. Phys. 109, 735-750 (2011). https://doi.org/10.1080/00268976.2011.552441
  4. A. J. Abhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong, and M. Martonosi, "ScaffCC: Scalable compilation and analysis of quantum programs," Parallel Comput. 45, 2-17 (2015). https://doi.org/10.1016/j.parco.2014.12.001
  5. A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron, "Quipper: A scalable quantum programming language," in Proc. 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (USA, Jun. 2013), pp. 333-342.
  6. J.-K. Kim, A.-R. Jang, and B.-S. Choi, "Quantitative analysis of quantum computing power," in Proc. KIPS Spring Conference (Dongguk Univ., Korea, Apr. 2016), pp. 84-86.
  7. J. Preskill, "Fault-tolerant quantum computation," arxiv: 9712048 (1997).
  8. A.-R. Jang and B.-S. Choi, "Performance analysis of ground state estimation algorithm on the fault-tolerant quantum computer system," in Proc. IEIE Summer Conference (Korea, Jun. 2016), pp. 91-94.
  9. C. R. Clark, T. S. Metodi, S. D. Gasster, and K. R. Brown, "Resource requirements for fault-tolerant simulation: The ground state of the transverse ising model," Phys. Rev. A 79, 062314 (2009). https://doi.org/10.1103/PhysRevA.79.062314
  10. N. J. Ross and P. Selinger, "Optimal ancilla-free Clifford+T approximation of z-rotations," https://arxiv.org/abs/1403.2975