DOI QR코드

DOI QR Code

Fatigue Constrained Topological Structure Design Considering the Stress Correction Factor

응력 수정 계수를 고려한 피로 제약 조건 구조물의 위상최적설계

  • Kim, Daehoon (Graduate school of Mechanical Engineering, Yonsei Univ.) ;
  • Ahn, Kisoo (Graduate school of Mechanical Engineering, Yonsei Univ.) ;
  • Jeong, Seunghwan (Graduate school of Mechanical Engineering, Yonsei Univ.) ;
  • Park, Soonok (Department of Engineering Automotive, Dong Seoul Univ.) ;
  • Yoo, Jeonghoon (Department of Mechanical Engineering, Yonsei Univ.)
  • 김대훈 (연세대학교 대학원 기계공학과) ;
  • 안기수 (연세대학교 대학원 기계공학과) ;
  • 정승환 (연세대학교 대학원 기계공학과) ;
  • 박순옥 (동서울대학교 기계자동차과) ;
  • 유정훈 (연세대학교 기계공학부)
  • Received : 2018.01.22
  • Accepted : 2018.03.13
  • Published : 2018.04.30

Abstract

In this study, a structure satisfying the fatigue constraint is designed by applying the topology optimization based on the phase field design method. In order to predict life based on the stress value, high cycle fatigue failure theory in which stress acts within the range of elastic limit is discussed and three fatigue theories of modified-Goodman, Smith-Watson-Topper and Gerber theory are applied. To calculate the global maximum stress, a modified P-norm stress correction method is used. As a result, it is possible to obtain topology optimization results that minimize the volume while satisfying the fatigue constraints. By applying the phase field design method, a simple shape with a minimized gray scale was obtained, and the maximum stress value acting on the optimization result became very close to the allowable stress value due to the modified P-norm stress method. While previous studies does not consider the stress correction factor, this study proposes the determination method regarding the stress correction factor considering loading effects related to axial stress components.

본 논문에서는 페이즈필드 설계법 기반의 피로 제약 조건 구조물의 위상최적설계를 수행하였다. 페이즈필드 설계법의 도입으로 기존의 위상최적설계법에서 발생하기 쉬운 중간 영역의 크기를 크게 감소시켰다. 수정된 upper bound P-norm의 도입으로 모든 지점의 응력 성분을 고려하면서, 전역적 응력값이 국부적 최대 응력값과 근사한 값을 가질 수 있도록 설정하였다. 또한 기존의 피로 파괴 제약 조건 위상최적설계에서 다루지 않았던 응력 수정 계수에 대한 고려를 위하여 위상최적설계 결과물의 1차 주응력 성분을 고려하여 응력 수정 계수를 도입하고 이에 따라 허용 응력 진폭 값을 수정 하였다. 이를 통하여 인장 응력으로 인한 내구 한도 감소 요인을 반영한 체계적인 설계 방안을 제시하였다.

Keywords

References

  1. Ahn, K. (2017) Structural Optimization using the Phase Field Method Considering Stress and Fatigue Constraints, Master Thesis, Yonsei University.
  2. Bendsoe, M.P., Kikuchi, N. (1988) Generating Optimal Topologies in Structural Design using a Homogenization Method, Comput. Methods Appl. Mech. & Eng., 71(2), pp.197-224. https://doi.org/10.1016/0045-7825(88)90086-2
  3. Dowling, N.E. (2004) Mean Stress Effects in Stress-life and Strain-life Fatigue(No. 2004-01-2227). SAE Technical Paper.
  4. Duysinx, P., Bendsoe, M.P. (1998) Topology Optimization of Continuum Structures with Local Stress Constraints, Int. J. Numer. Methods Eng., 43(8), pp.1453-1478. https://doi.org/10.1002/(SICI)1097-0207(19981230)43:8<1453::AID-NME480>3.0.CO;2-2
  5. Guest, J.K. (2009) Topology Optimization with Multiple Phase Projection, Comput. Methods Appl. Mech. & Eng., 199(1), pp.123-135. https://doi.org/10.1016/j.cma.2009.09.023
  6. Holmberg, E., Torstenfelt, B., Klarbring, A. (2014) Fatigue Constrained Topology Optimization, Struct. & Multidiscip. Optim., 50(2), pp.207-219. https://doi.org/10.1007/s00158-014-1054-6
  7. Lee, K., Ahn, K., Yoo, J. (2016) A Novel P-Norm Correction Method for Lightweight Topology Optimization under Maximum Stress Constraints, Comput. & Struct., 171, pp.18-30. https://doi.org/10.1016/j.compstruc.2016.04.005
  8. Lim, H., Yoo, J., Choi, J.S. (2014) Topological Nano-Aperture Configuration by Structural Optimization based on the Phase Field Method, Struct. & Multidiscip. Optim., 49(2), pp.209-224. https://doi.org/10.1007/s00158-013-0970-1
  9. Norton, R.L. (2011) Machine Design: An Integrated Approach, Prentice-Hall Inc: NJ, USA.
  10. Paris, J., Navarrina, F., Colominas, I., Casteleiro, M. (2009) Topology Optimization of Continuum Structures with Local and Global Stress Constraints, Struct. & Multidiscip. Optim., 39(4), pp.419-437. https://doi.org/10.1007/s00158-008-0336-2
  11. Qiu, G.Y., Li, X.S. (2010) A Note on the Derivation of Global Stress Constraints, Structural and Multidisciplinary Optimization, 40(1-6), p.625. https://doi.org/10.1007/s00158-009-0397-x
  12. Sigmund, O. (2007) Morphology-based Black and White Filters for Topology Optimization, Struct. & Multidiscip. Optim., 33(4), pp.401-424. https://doi.org/10.1007/s00158-006-0087-x
  13. Takezawa, A., Nishiwaki, S., Kitamura, M. (2010) Shape and Topology Optimization based on the Phase Field Method and Sensitivity Analysis, J. Comput. Phys., 229, pp.2697-2718. https://doi.org/10.1016/j.jcp.2009.12.017
  14. Wohler, A. (1870) Uber die Festigkeits-Versuche Mit Eisen und Stahl.