DOI QR코드

DOI QR Code

Effect of starch extraction solutions on extraction and physicochemical property of Chinese yam (Dioscorea batatas) starch

마(Dioscorea batatas) 전분의 추출 및 물리화학적 특성에 대한 전분추출용액의 영향

  • Lee, Hyunjeong (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Seo, Dong-Ho (Research Group of Gut Microbiome, Korea Food Research Institute) ;
  • Kim, Hyun-Seok (Department of Food Science and Biotechnology, Kyonggi University)
  • 이현정 (경기대학교 식품생물공학과) ;
  • 서동호 (한국식품연구원 장내미생물연구단) ;
  • 김현석 (경기대학교 식품생물공학과)
  • Received : 2018.01.25
  • Accepted : 2018.02.01
  • Published : 2018.04.30

Abstract

This study investigated the influence of starch extraction (ST-EX) solutions on the extraction yield and characteristics of Chinese yam (CY) starches from domestic Dioscorea batatas. Ascorbic acid (VitC), $Na_2S_2O_3$, $NaHCO_3$, and $Na_2CO_3$ were used as ST-EX solutions (0.4%, w/v). The extracted CY starches were examined for ST-EX yield, chemical composition, size distribution, X-ray diffraction, solubility, swelling power, gelatinization, and pasting viscosity. The highest ST-EX yield was obtained from $NaHCO_3$, followed by VitC. Lower protein content, relative crystallinity, and gelatinization enthalpy were found in CY starches from alkaline ST-EX solutions ($NaHCO_3$ and $Na_2CO_3$). Size distribution and gelatinization temperature did not generally differ for CY starches from the different ST-EX solutions. Pasting viscosities increased in the order from $Na_2CO_3$ > $Na_2S_2O_3$ > $NaHCO_3$ > VitC ST-EX solutions. Thus, VitC may be most appropriate to extract CY starch from Dioscorea rhizomes, considering its ST-EX yield, total starch content, and variation in pasting viscosity.

마로부터 전분의 추출조건을 확립하기 위해 아스코르브산, 메타중아황산나트륨, 탄산수소나트륨 및 탄산나트륨을 전분추출용액으로 하여 추출된 전분의 추출수율과 물리화학적 특성을 조사하였다. 증류수를 이용하여 마로부터 전분을 추출할 경우 추출수율은 본 연구에서 적용한 전분추출용액을 사용할 때의 약 30% 수준으로 매우 낮았으며, 전분추출과정 중 갈변현상의 발생으로 최종적인 마 전분이 회백색을 띄어 전분소재로 적합하지 않았다. 마 전분의 추출수율은 전분추출용액에 따라 통계적으로 유의성은 없었으나 탄산수소나트륨 용액을 사용한 경우 가장 높았으며, 아스코르브산 용액을 사용한 경우가 다음으로 높은 추출수율을 나타내었다. 마 전분들의 조단백질 함량은 대표적인 서류전분들에 비해 높은 수준이었으나 총 전분함량은 유사하거나 높아 전분소재로서 활용이 가능한 것으로 보인다. 겉보기 아밀로오스 함량은 산성 전분추출용액들에 의해 제조된 마 전분들이 염기성 전분추출용액들에 의한 것보다 낮은 수준을 나타내었다. 마 전분의 입도분포와 평균입도는 전분추출용액에 따라 큰 차이를 나타내지 않았다. X선 회절패턴은 전형적인 C형 결정구조를 나타내었으며, 염기성 전분추출용액들을 사용한 경우 상대적 결정도는 감소하였다. 용해도는 전분추출용액에 따른 특정 경향을 나타내지 않았으나, 팽윤력은 산성에 비해 염기성 전분추출용액들을 사용하였을 때가 높았다. 마 전분들의 호화온도는 대체로 유사한 수준이었으나 호화엔탈피는 산성에 비해 염기성 전분추출용액들을 사용하였을 때 감소하였다. 페이스팅 점도는 탄산나트륨, 메타중아황산나트륨, 탄산수소나트륨, 아스코르브산 용액들에 의한 마전분들의 순서로 증가하였다. 특히 마 전분들의 강하점도(breakdown viscosity)와 치반점도(setback viscosity)는 염기성 전분추출용액들을 사용하였을 때 증가하는 양상을 나타내었다. 전반적으로 아스코르브산 용액을 이용하여 제조된 마 전분은 추출수율이 상대적으로 높고, 총 전분 함량도 풍부하며, 온도프로파일에 따른 페이스팅 점도의 변동이 상대적으로 적다. 또한 본 연구에서 적용된 전분추출용매들에 비해 아스코르브산은 마 전분 내에 전분추출용액의 잔류에 대한 안전성 문제가 없다. 결과적으로 마로부터 마 전분의 추출을 위한 전분추출용액을 위해서는 아스코르브산을 사용하는 것이 적절한 것 같다.

Keywords

References

  1. AACC. Approved Method of the AACC. 10th ed. Methods 46-08 & 76-13. American Association of Cereal Chemists, St Paul, MN, USA (2000)
  2. Abegunde OK, Mu TH, Chen JW, Deng FM. Physicochemical characterization of sweet potato starches popularly used in Chinese starch industry. Food Hydrocolloid. 33: 169-177 (2013) https://doi.org/10.1016/j.foodhyd.2013.03.005
  3. Chrastil J. Improved colorimetric determination of amylose in starches or flours. Carbohyd. Res. 159: 154-158 (1987) https://doi.org/10.1016/S0008-6215(00)90013-2
  4. Chung HY. Carbohydrate analyses of Korean yam (Dioscorea) tubers. Korean J. Food Sci. Technol. 27: 36-40 (1995)
  5. Cheetham NWH, Tao L. Variation in crystalline type with amylose content in maize starch granules: An X-ray powder diffraction study. Carbohyd. Polym. 36: 277-284 (1998) https://doi.org/10.1016/S0144-8617(98)00007-1
  6. Chen HL, Wang CH, Chang CT, Wang TC. Effects of Taiwanese yam (Dioscorea japonica Thunb var. pseudojaponica Yamamoto) on upper gut function and lipid metabolism in Balb/c mice. Nutrition 19: 646-651 (2003) https://doi.org/10.1016/S0899-9007(03)00058-3
  7. Choi EM, Koo SJ, Hwang JK. Immune cell stimulating activity of mucopolysaccharide isolated from yam (Dioscorea batatas). J. Ethnopharmacol. 91: 1-6 (2004). https://doi.org/10.1016/j.jep.2003.11.006
  8. Jang SM. Contents of nutritional ingredients and diosgenin in the tubers of different Dioscorea spp.. Korean J. Food Nutr. 22: 223- 228 (2009)
  9. Korea Forest Service. Trends in the production amount of forest products. http://www.index.go.kr/potal/main/EachDtlPageDetail.do ?idx_cd=1302. Accessed Jan. 15, 2018.
  10. Kumar L, Brennan M, Zheng H, Brennan C. The effects of dairy ingredients on the pasting, textural, rheological, freeze-thaw properties and swelling behaviour of oat starch. Food Chem. 245: 518-524 (2018) https://doi.org/10.1016/j.foodchem.2017.10.125
  11. Kim EJ, Kim HS. Physicochemical properties of dehydrated potato parenchyma cells with ungelatinized and gelatinized starches. Carbohyd. Polym. 117: 845-852 (2015) https://doi.org/10.1016/j.carbpol.2014.10.038
  12. Kim MJ, Kim HN, Kang KS, Baek NI, Kim DK, Kim YS, Kim SH, Jean BH. Methanol extract of Dioscoreae Rhizoma inhibits proinflammatory cytokines and mediators in the synoviocytes of rheumatoid arthritis. Int. Immunopharmacol. 4: 1489-1497 (2004) https://doi.org/10.1016/j.intimp.2004.07.001
  13. Kim WS, Kim SS, Park YK, Seog HM. Physicochemical properties of several Korean yam starches. Korean J. Food Sci. Technol. 23: 554-560 (1991)
  14. Kim JY, Lee YC, Kim YC, Kim YB, Choi HW. Research on processing properties of yam (Disocorea batatas) by drying methods and milling methods. Food Eng. Prog. 20: 307-313 (2016) https://doi.org/10.13050/foodengprog.2016.20.4.307
  15. Kim IH, Son HJ, Chung KM. Viscosity of yam suspension by drying methods and additives. Korean J. Food Sci. Technol. 38: 444-447 (2006)
  16. Lee BY, Kim HK. Quality properties of Korean yam by various drying methods. Korean J. Food Sci. Technol. 30: 877-882 (1998)
  17. Lee BY, Lee YC, Kim HM, Kim CJ, Park MH. Rheological properties of the gelatinized yam starch solution. Korean J. Food Sci. Technol. 24: 619-622 (1992)
  18. Lee DS, Park YM. Optimization of curing treatment and storage temperature of Chinese yam. Kor. J. Hort. Sci. Technol. 31: 289-298 (2013)
  19. McAnuff MA, Harding WW, Omoruyi FO, Jacobs H, Morrison EY, Asemota HN. Hypoglycemic effects of steroidal sapogenins isolated from Jamaican bitter yam, Dioscorea polygonoides. Food Chem. Toxicol. 43: 1667-1672 (2005) https://doi.org/10.1016/j.fct.2005.05.008
  20. Ma F, Zhang Y, Liu N, Zhang J, Tan G, Kannan B, Liu X, Bell AE. Rheological properties of polysaccharides from Dioscorea opposita Thunb.. Food Chem. 227: 64-72 (2017) https://doi.org/10.1016/j.foodchem.2017.01.072
  21. Onwueme IC. The tropical tuber crops: Yams, cassava, sweet potato and coco yam. John Wiley & Sons Inc., Somerset, NJ, USA. pp. 24-30 (1978)
  22. Palacios-Fonseca AJ, Castro-Rosas J, Gmez-Aldapa CA, Tovar- Bentez T, Milln-Malo BM, del Real A, Rodrguez-Garca ME. Effect of the alkaline and acid treatments on the physicochemical properties of corn starch. CyTA-J. Food 11: 67-74 (2013) https://doi.org/10.1080/19476337.2012.761651
  23. Park YM, Lim JH, Jeong HJ, Seo EW. Protective effects of crude mucin and saponin from Dioscorea rhizoma on gastric ulcer induced by alcohol in rats. J. Life Sci. 24: 1200-1208 (2014) https://doi.org/10.5352/JLS.2014.24.11.1200
  24. Prez OE, Haros M, Suarez C. Corn steeping: influence of time and lactic acid on isolation and thermal properties of starch. J. Food Eng. 48: 251-256 (2001) https://doi.org/10.1016/S0260-8774(00)00165-5
  25. Qiu C, Li X, Ji N, Qin Y, Sun Q, Xiong L. Rheological properties and microstructure characterization of normal and waxy corn starch dry heated with soy protein isolate. Food Hydrocolloid. 48: 1-7 (2015) https://doi.org/10.1016/j.foodhyd.2015.01.030
  26. Shin JH, Kim SK, Kang DK, Park SZ. Effect of fertilizer and organic matter level on marketable tuber production in Chinese yam (Dioscorea opposite). Korean J. Crop Sci. 59: 144-150 (2014) https://doi.org/10.7740/kjcs.2014.59.2.144
  27. Shujun W, Hongyan L, Wenyuan G, Haixia C, Jiugao Y, Peigen X. Characterization of new starches separated from different Chinese yam (Dioscorea opposita Thunb.) cultivars. Food Chem. 99: 30- 37 (2006a) https://doi.org/10.1016/j.foodchem.2005.07.008
  28. Shujun W, Jinglin Y, Wenyuan G, Hongyan L, Peigen X. New starches from traditional Chinese medicine (TCM)-Chinese yam (Dioscorea opposita Thunb.) cultivars. Carbohyd. Res. 341: 289-293 (2006b) https://doi.org/10.1016/j.carres.2005.10.022
  29. Srichuwong S, Sunarti TC, Mishima T, Isono N, Hisamatsu M. Starches from different botanical sources II: Contribution of starch structure to swelling and pasting properties. Carbohyd. Polym. 62: 25-34 (2005) https://doi.org/10.1016/j.carbpol.2005.07.003
  30. Sugimoto N, Yoshida N, Nakamura Y, Ichikawa H, Naito Y, Okanoue T, Yosikawa T. Influence of vitamin E on gastric mucosal injury induced by Helicobacter pylori infection. Biofactors 28: 9-19 (2006) https://doi.org/10.1002/biof.5520280102
  31. Wang Y, Gao W, Li X. Carboxymethyl Chinese yam starch: Synthesis, characterization, and influence of reaction parameters. Carbohyd. Res. 344: 1764-1769 (2009) https://doi.org/10.1016/j.carres.2009.06.014
  32. Wang S, Yu J, Yu J, Liu H. Granule structure of C-type Chinese yam (Dioscorea opposita Thunb var. Zhongbowen) starch by acid hydrolysis. Food Hydrocolloid. 22: 538-542 (2008) https://doi.org/10.1016/j.foodhyd.2007.01.006