DOI QR코드

DOI QR Code

Nutritional composition, antioxidant capacity, and brain neuronal cell protective effect of cultivars of dried persimmon (Diospyros kaki)

품종별 곶감(Diospyros kaki)의 영양성분 분석, 산화방지 효과 및 뇌 신경세포 보호효과

  • Kim, Jong Min (Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Park, Seon Kyeong (Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kang, Jin Yong (Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Park, Sang Hyun (Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Park, Su Bin (Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Yoo, Seul Ki (Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Han, Hye Ju (Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Lee, Su-Gwang (National Institute of Forest Science, Division of Special Forest Products) ;
  • Lee, Uk (National Institute of Forest Science, Division of Special Forest Products) ;
  • Heo, Ho Jin (Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University)
  • 김종민 (경상대학교 응용생명과학부(BK21 plus), 농업생명과학연구원) ;
  • 박선경 (경상대학교 응용생명과학부(BK21 plus), 농업생명과학연구원) ;
  • 강진용 (경상대학교 응용생명과학부(BK21 plus), 농업생명과학연구원) ;
  • 박상현 (경상대학교 응용생명과학부(BK21 plus), 농업생명과학연구원) ;
  • 박수빈 (경상대학교 응용생명과학부(BK21 plus), 농업생명과학연구원) ;
  • 유슬기 (경상대학교 응용생명과학부(BK21 plus), 농업생명과학연구원) ;
  • 한혜주 (경상대학교 응용생명과학부(BK21 plus), 농업생명과학연구원) ;
  • 이수광 (국립산림과학원 산림소득자원연구과) ;
  • 이욱 (국립산림과학원 산림소득자원연구과) ;
  • 허호진 (경상대학교 응용생명과학부(BK21 plus), 농업생명과학연구원)
  • Received : 2018.01.05
  • Accepted : 2018.02.20
  • Published : 2018.04.30

Abstract

This study was conducted to compare nutritional analysis and neuroprotective effect of 5 cultivars of Diospyros kaki (Dungsi, Godongsi, Gojongsi, Gabjubaekmok, and Bansi). In nutritional analysis, three free sugars: sucrose, glucose, and fructose, and six fatty acids: tartaric acid, hexadecanoic acid, palmitic acid, oleic acid, octadecenamide, and octadecane, were detected. Potassium and phosphorus levels were the highest in inorganic component analysis, and glutamic acid and aspartic acid were the highest contents in amino acid analysis. Vitamin C was detected in all cultivars. Total phenolic content was the highest in Dungsi. Antioxidant activities such as ABTS (3-ethylbenzothiazoline-6-sulfonic acid), DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activities, FRAP (ferric reducing/antioxidant power), and MDA (malondialdehyde) inhibitory effect were the highest in Gabjubaekmok. Acetylcholinesterase inhibitory activity, cell viability, intracellular reactive oxygen species (ROS) accumulation, and lactate dehydrogenase (LDH) release were measured to confirm the neuroprotective effect in MC-IXC cells. Gabjubaekmok showed significant acetylcholinesterase (AChE) inhibition and neuroprotection.

본 연구에서는 떫은감의 5가지 공시품종인 상주둥시, 고종시, 고동시, 갑주백목, 청도반시를 이용하여 가공된 곶감의 유리당, 지방산, 무기성분, 구성 아미노산, 바이타민 C와 같은 영양성분 분석을 진행하였고, 총 페놀성 화합물의 함량을 측정함과 동시에 in vitro 상에서 ABTS, DPPH 라디칼 제거 활성을 측정하였고, FRAP, 지방질과산화물 생성 억제효과, 아세틸콜린 분해효소 억제효과를 확인하였다. 이를 토대로 MC-IXC 뇌 신경세포에서 신경세포 생존율과 산화적 스트레스 억제효과, 세포막 보호효과를 확인하였다. 유리당 분석에서는 상주둥시 품종이 포도당(glucose), 과당(fructose) 함량이 가장 높았고, 지방산 함량은 상주둥시 품종에서는 올레산(oleic acid)이, 고동시, 고종시, 갑주백목, 반시에서는 팔미트산(palmitic acid)이 가장 높은 비율을 나타내었다. 포타슘과 인의 함량이 다른 무기성분들에 비해 월등히 높았으며, 주요 아미노산으로는 아스파트산(aspartic acid)과 글루탐산(glutamic acid)이 상대적으로 높았고, 바이타민 C 역시 5 품종 모두 검출되었다. 또한, 총 페놀성 화합물을 상주둥시의 95% 에탄올 추출물이 가장 높았고, ABTS, DPPH 라디칼 제거 활성과 FRAP, 지방질 과산화물 생성 억제활성 그리고 아세틸콜린 분해효소 억제 활성에서 갑주백목의 80% 에탄올 추출물이 가장 높은 활성을 나타내었다. 산화적 스트레스에 대한 뇌 신경세포 생존율은 갑주백목이 가장 높은 생존율을 나타내었으며, 산화적 스트레스 생성 억제와 뇌 신경세포 세포막 보호효과 역시 갑주백목이 가장 큰 억제 활성과 보호효과를 보였다. 이와 같은 결과로 보아 곶감은 뛰어난 산화방지 효과를 가지고 있으며, 이를 근간으로 뇌 신경세포 보호효과도 우수한 것으로 나타났다. 이러한 생리활성능력은 임산물의 고부가가치 소재개발에 있어 산업적 활용 가능성을 재고하는데 도움이 될 것으로 판단된다. 다만 생리활성 물질의 검증이 부족하고, 산화방지 활성이 in vitro 상의 효과에 국한된 점에서 향후 물질분석과 인기지능 개선 효과 검증을 통해 인기지능 개선 건강기능식품 소재로서 연구될 수 있을 것으로 판단된다.

Keywords

References

  1. Achiwa Y, Hibasami H, Katsuzaki H, Imai K, Komiya T. Inhibitory effects of persimmon (Diospyros kaki) extract and related polyphenol compounds on growth of human lymphoid leukemia cells. Biosci. Biotechnol. Biochem. 61: 1099-1101 (1997) https://doi.org/10.1271/bbb.61.1099
  2. Ahmed ME, Khan MM, Javed H, Vaibhav K, Khan A, Tabassum R, Islam F. Amelioration of cognitive impairment and neurodegeneration by catechin hydrate in rat model of streptozotocin-induced experimental dementia of Alzheimer's type. Neurochem. Int. 62: 492-501 (2013) https://doi.org/10.1016/j.neuint.2013.02.006
  3. Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. 90: 7915-7922 (1993) https://doi.org/10.1073/pnas.90.17.7915
  4. Barford D. The role of cysteine residues as redox-sensitive regulatory switches. Curr. Opin. Struct. Biol. 14: 679-686 (2004) https://doi.org/10.1016/j.sbi.2004.09.012
  5. Behl C, Moosmann B. Antioxidant neuroprotection in Alzheimer's disease as preventive and therapeutic approach. Free. Radic. Biol. Med. 33: 182-191 (2002) https://doi.org/10.1016/S0891-5849(02)00883-3
  6. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal. Biochem. 239: 70-76 (1996) https://doi.org/10.1006/abio.1996.0292
  7. Bian LL, You SY, Park J, Yang SJ, Chung HJ. Characteristics of Nutritional components in astringent persimmons according to growing region and cultivar. J. Korean Soc. Food Sci. Nutr. 44: 379-385 (2015) https://doi.org/10.3746/jkfn.2015.44.3.379
  8. Biedler JL, Helson L, Spengler BA. Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res. 33: 2643-2652 (1973)
  9. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200 (1958) https://doi.org/10.1038/1811199a0
  10. Catani MV, Savini I, Rossi A, Melino G, Avigliano L. Biological role of vitamin C in keratinocytes. Nutr. Rev. 63: 81-90 (2005)
  11. Chang CS, Chang CL, Lai GH. Reactive oxygen species scavenging activities in a chemiluminescence model and neuroprotection in rat pheochromocytoma cells by astaxanthin, beta-carotene, and canthaxanthin. Kaohsiung J. Med. Sci. 29: 412-421 (2013) https://doi.org/10.1016/j.kjms.2012.12.002
  12. Chang ST, Wu JH, Wang SY, Kang PL, Yang NS, Shyur LF. Antioxidant activity of extracts from Acacia confusa bark and heartwood. J. Agric. Food Chem. 49: 3420-3424 (2001) https://doi.org/10.1021/jf0100907
  13. Choi DJ, Lee SH, Yoon JT, Sim YG, Oh SG, Jun HJ. Effect of polypropylene film package and storage temperature on the shelflife extension of spinach (Spinacia oleracea L.). J. Bio-Environ. Control. 16: 247-251 (2007)
  14. Cui C, Zhang Y, Wang L, Liu H, Cui G. Enhanced anticancer activity of glutamate prodrugs of alltrans retinoic acid. J. Pharm. Pharmacol. 61: 1353-1358 (2009) https://doi.org/10.1211/jpp.61.10.0012
  15. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. U. S. A. 104: 19345-19350 (2007) https://doi.org/10.1073/pnas.0709747104
  16. Desagher S, Glowinski J, Premont J. Astrocytes protect neurons from hydrogen peroxide toxicity. J. Neurosci. 16: 2553-2562 (1996) https://doi.org/10.1523/JNEUROSCI.16-08-02553.1996
  17. Dunlop DS, Neidle A, McHale D, Dunlop DM, Lajtha A. The presence of free D-aspartic acid in rodents and man. Biochem. Biophys. Res. Commun. 141: 27-32 (1986) https://doi.org/10.1016/S0006-291X(86)80329-1
  18. Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 88-95 (1961) https://doi.org/10.1016/0006-2952(61)90145-9
  19. Ge Z, Zhang M, Deng X, Zhu W, Li K, Li C. Persimmon tannin promoted macrophage reverse cholesterol transport through inhibiting ERK1/2 and activating PPAR${\gamma}$ both in vitro and in vivo. J. Funct. Foods 38: 338-348 (2017) https://doi.org/10.1016/j.jff.2017.09.023
  20. Haddy FJ, Vanhoutte PM, Feletou M. Role of potassium in regulating blood flow and blood pressure. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 290: 546-552 (2006) https://doi.org/10.1152/ajpregu.00491.2005
  21. Heo HJ, Cho HY, Hong B, Kim HK, Kim EK, Kim BG, Shin DH. Protective effect of 4',5-dihydroxy-3',6,7-trimethoxyflavone from Artemisia asiatica against $A{\beta}$-induced oxidative stress in PC12 cells. Amyloid 8: 194-201 (2001) https://doi.org/10.3109/13506120109007362
  22. Hong JS, Chae KY. Physicochemical characteristics and antioxidant activity of astringent persimmon concentrate by boiling. Korean J. Food. Cook. Sci. 21: 709-716 (2005)
  23. Huang SW, Wang W, Zhang MY, Liu QB, Luo SY, Peng Y, Song SJ. The effect of ethyl acetate extract from persimmon leaves on Alzheimer's disease and its underlying mechanism. Phytomedicine 23: 694-704 (2016) https://doi.org/10.1016/j.phymed.2016.03.009
  24. Ishige K, Schubert D, Sagara Y. Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic. Biol. Med. 30: 433-446 (2001) https://doi.org/10.1016/S0891-5849(00)00498-6
  25. Jacob C, Giles GI, Giles NM, Sies H. Sulfur and selenium: the role of oxidation state in protein structure and function. Angew. Chem. Int. Ed. 42: 4742-4758 (2003) https://doi.org/10.1002/anie.200300573
  26. Jeong CH, Kwak JH, Kim JH, Choi GN, Jeong HR, Kim DO, Heo HJ. Changes in nutritional components of Daebong-gam (Diospyros kaki) during ripening. Korean J. Food Preserv. 17: 526-532 (2010)
  27. Jo YH, Park JW, Lee JM, Ahn GH, Park HR, Lee SC. Antioxidant and anticancer activities of methanol extracts prepared from different parts of Jangseong Daebong persimmon (Diospyros kaki cv. Hachiya). J. Korean Soc. Food Sci. Nutr. 39: 500-505 (2010) https://doi.org/10.3746/jkfn.2010.39.4.500
  28. Joo OS, Kang ST, Jeong CH, Lim JW, Park YG, Cho KM. Manufacturing of the enhances antioxidative wine using a ripe daebong persimmon (Dispyros kaki L). J. Korean Soc. Appl. Biol. Chem. 54: 126-134 (2011) https://doi.org/10.3839/jabc.2011.022
  29. Khan MTH, Orhan I, Enol FS, Kartal M, Ener B, Dvorsk M, Lapetov T. Cholinesterase inhibitory activities of some flavonoid derivatives and chosen xanthone and their molecular docking studies. Chem. Biol. Interact. 181: 383-389 (2009) https://doi.org/10.1016/j.cbi.2009.06.024
  30. im DO, Jeong SW, Lee CY. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 81: 321-326 (2003) https://doi.org/10.1016/S0308-8146(02)00423-5
  31. Kwon SH, Lee HK, Kim JA, Hong SI, Kim HC, Jo TH, Jang CG. Neuroprotective effects of chlorogenic acid on scopolamineinduced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. Eur. J. Pharmacol. 649: 210-217 (2010) https://doi.org/10.1016/j.ejphar.2010.09.001
  32. Lardy HA, Paetkau V, Walter P. Paths of carbon in gluconeogenesis and lipogenesis: the role of mitochondria in supplying precursors of phosphoenolpyruvate. Proc. Natl. Acad. Sci. U. S. A. 53: 1410-1415 (1965) https://doi.org/10.1073/pnas.53.6.1410
  33. Li PM, Du GR, Ma FW. Phenolics concentration and antioxidant capacity of different fruit tissues of astringent versus non-astringent persimmons. Sci. Hortic. 129: 710-714 (2011) https://doi.org/10.1016/j.scienta.2011.05.024
  34. Ma J, Liu XY, Noh KH, Kim MJ, Song YS. Protective effects of persimmon leaf and fruit extracts against acute ethanol-induced hepatotoxicity. Prev. Nutr. Food Sci. 12: 202-208 (2007) https://doi.org/10.3746/jfn.2007.12.4.202
  35. Metcalfe LD, Schmitz AA, Pelka JR. Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal. Chem. 38: 514-515 (1966) https://doi.org/10.1021/ac60235a044
  36. No J, Kim J, Zhang C, Kim H, Shin M. Effect of astringency removal conditions on the quality of Daebong persimmon. Korean J. Food Cook. Sci. 30: 351-359 (2014) https://doi.org/10.9724/kfcs.2014.30.3.351
  37. Padayatty SJ, Katz A, Wang Y, Eck P, Kwon O, Lee JH, Levine M. Vitamin C as an antioxidant: evaluation of its role in disease prevention. J. Am. Coll. Nutr. 22: 18-35 (2003) https://doi.org/10.1080/07315724.2003.10719272
  38. Palacios C. The role of nutrients in bone health, from A to Z. Crit. Rev. Food Sci. Nutr. 46: 621-628 (2006) https://doi.org/10.1080/10408390500466174
  39. Park HR, Hwang D, Hong HD, Shin KS. Antitumor and antimetastatic activities of pectic polysaccharides isolated from persimmon leaves mediated by enhanced natural killer cell activity. J. Funct. Foods 37: 460-466 (2017) https://doi.org/10.1016/j.jff.2017.08.027
  40. Singh M, Nam DT, Arseneault M, Ramassamy C. Role of by-products of lipid oxidation in Alzheimer's disease's brain: a focus on acrolein. J. Alzheimers Dis. 21: 741-756 (2010) https://doi.org/10.3233/JAD-2010-100405
  41. Stamler J, Brown IJ, Daviglus ML, Chan Q, Kesteloot H, Ueshima H, Elliott P. Glutamic acid, the main dietary amino acid, and blood pressure. Circulation 120: 221-228 (2009) https://doi.org/10.1161/CIRCULATIONAHA.108.839241
  42. Tian Y, Zou B, Yang L, Xu SF, Yang J, Yao P, Li CM. High molecular weight persimmon tannin ameliorates cognition deficits and attenuates oxidative damage in senescent mice induced by Dgalactose. Food Chem. Toxicol. 49: 1728-1736 (2011) https://doi.org/10.1016/j.fct.2011.04.018
  43. Wang W, Shinto L, Connor WE, Quinn JF. Nutritional biomarkers in Alzheimer's disease: the association between carotenoids, n-3 fatty acids, and dementia severity. J. Alzheimer's Dis. 13: 31-38 (2008) https://doi.org/10.3233/JAD-2008-13103
  44. Winkler J, Thal LJ, Gage FH, Fisher LJ. Cholinergic strategies for Alzheimer's disease. J. Mol. Med. 76: 555-567 (1998) https://doi.org/10.1007/s001090050250
  45. Zhang R, Lu Y, Ye L, Yuan B, Yu S, Qin C, Feng JQ. Unique roles of phosphorus in endochondral bone formation and osteocyte maturation. J. Bone Miner. Res. 26: 1047-1056 (2011) https://doi.org/10.1002/jbmr.294
  46. Zhao B. Natural antioxidants protect neurons in Alzheimer's disease and Parkinson's disease. Neurochem. Res. 34: 630-638 (2009) https://doi.org/10.1007/s11064-008-9900-9