DOI QR코드

DOI QR Code

Post Annealing Effects on the Electrical Properties of Polysilicon Metal-Semiconductor-Metal Photodetectors

폴리 실리콘을 이용한 금속-반도체-금속 광 검출기의 열처리에 따른 전기적 특성

  • Kim, Kyeong-Min (Department of Information & Electronics Engineering, Uiduk University) ;
  • Kim, Jung-Yeul (Division of Green Energy Engineering, Uiduk University) ;
  • Lee, You-Kee (Division of Green Energy Engineering, Uiduk University) ;
  • Choi, Yong-Sun (Department of Information & Electronics Engineering, Uiduk University) ;
  • Lee, Jae-Sung (Division of Green Energy Engineering, Uiduk University) ;
  • Lee, Young-Ki (Division of Green Energy Engineering, Uiduk University)
  • 김경민 (위덕대학교 일반대학원 정보전자공학과) ;
  • 김정열 (위덕대학교 그린에너지공학부) ;
  • 이유기 (위덕대학교 그린에너지공학부) ;
  • 최용선 (위덕대학교 일반대학원 정보전자공학과) ;
  • 이재성 (위덕대학교 그린에너지공학부) ;
  • 이영기 (위덕대학교 그린에너지공학부)
  • Received : 2017.12.13
  • Accepted : 2018.03.12
  • Published : 2018.04.27

Abstract

This study investigated the effects of the post annealing temperatures on the electrical and interfacial properties of a metal-semiconductor-metal photodetector(MSM-PD) device. The interdigitate type MSM-PD devices had the structure Al(500 nm) / Ti(200 nm) / poly-Si(500 nm). Structural analyses of the MSM-PD devices were performed by employing X-ray diffraction(XRD), scanning electron microscopy(SEM) and transmission electron microscope(TEM). Electrical characteristics of the MSM-PD were also examined using current-voltage(I-V) measurements. The optimal post annealing condition for the Schottky contact of MSM-PD devices are $350^{\circ}C$-30minutes. However, as the annealing temperature and time are increased, electrical characteristics of MSM-PD device are degraded. Especially, for the annealing conditions of $400^{\circ}C$-180minutes and $500^{\circ}C$-30minutes, the I-V measurement itself was impossible. These results are closely related to the solid phase reactions at the interface of MSM-PD device, which result in the formation of intermetallic compounds such as $Al_3Ti$ and $Ti_7Al_5Si_{12}$.

Keywords

References

  1. M. Li and W. A. Anderson, Solid State Electron., 51, 94 (2007). https://doi.org/10.1016/j.sse.2006.11.006
  2. L.-H. Laih, T.-C. Chang, Y.-A. Chen, W.-C. Tsay, and J.-W. Hong, IEEE Trans. Electron. Devices, 45, 2018 (1998). https://doi.org/10.1109/16.711369
  3. Z. Hassan, Y. C. Lee, F. K. Yam, M. J. Abdullah, K. Ibrahim, and M. E. Kordesch, Mater. Chem. Phys., 84, 369 (2004). https://doi.org/10.1016/j.matchemphys.2003.11.036
  4. T. Masui, S. Khunkhao, K. Kobayashi, S. Niemcharoen, S. Supadech, and K. Sato, Solid-State Electron., 47, 1385 (2003). https://doi.org/10.1016/S0038-1101(03)00027-3
  5. R. P. MacDonald, N. G. Tarr, B. A. Syrett, S. A. Boothroyd, and J. Chrostowski, IEEE Photon. Technol. Lett., 11, 108 (1999). https://doi.org/10.1109/68.736410
  6. C. S. Oh, S.W. Kim, and C. S. Han, Korean J. Mater. Res., 27, 8 (2017). https://doi.org/10.3740/MRSK.2017.27.1.8
  7. C. Y. Ting and B. L. Crowder, J. Electrochem. Soc.: Solid-State Sci. and Tech., 129, 2590 (1982).
  8. S. J. Jeong, S. M. Kim, Y. M. Kang, H. S. Lee, and D. H. Kim, Korean J. Mater. Res., 26, 422 (2016). https://doi.org/10.3740/MRSK.2016.26.8.422
  9. D. P. Poenar and R. F. Wolffenbuttel, Appl. Opt., 36, 5122 (1997). https://doi.org/10.1364/AO.36.005122
  10. S. Y. Chou, Y. Liu, W. Khalil, T. Y. Hsiang, and S. Alexandrou, Appl. Phys. Lett., 61, 819 (1992). https://doi.org/10.1063/1.107755
  11. J.-W. Shi, K.-G. Gan, Y.-J. Chiu, C.-K. Sun, Y.-J. Yang, and J. E. Bowers, IEEE Photon. Technol. Lett., 16, 623 (2001).
  12. R. Hussin, Y. Chen, and Y. Luo, Appl. Phys. Lett., 102, 093507 (2013). https://doi.org/10.1063/1.4794421
  13. S. Averine, Y. C. Chan, and Y. L. Lam, Appl. Phys Lett., 77, 274 (2000). https://doi.org/10.1063/1.126948
  14. S. Verghese, J. R. Hauser, J. J. Wartman, and S. E. Kerns, IEEE Trans. Electron. Devices, 36, 1311 (1989). https://doi.org/10.1109/16.30937