DOI QR코드

DOI QR Code

Photoelectrochemical Properties of a Cu2O Film/ZnO Nanorods Oxide p-n Heterojunction Photoelectrode for Solar-Driven Water Splitting

물분해용 Cu2O 박막/ZnO 나노막대 산화물 p-n 이종접합 광전극의 광전기화학적 특성

  • Park, Junghwan (Graduate School of Advanced Circuit Substrate Engineering, Chungnam National University) ;
  • Kim, Hyojin (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Dojin (Department of Materials Science and Engineering, Chungnam National University)
  • 박정환 (충남대학교 차세대기판학과) ;
  • 김효진 (충남대학교 공과대학 신소재공학과) ;
  • 김도진 (충남대학교 공과대학 신소재공학과)
  • Received : 2018.01.08
  • Accepted : 2018.03.16
  • Published : 2018.04.27

Abstract

We report on the fabrication and photoelectrochemical(PEC) properties of a $Cu_2O$ thin film/ZnO nanorod array oxide p-n heterojunction structure with ZnO nanorods embedded in $Cu_2O$ thin film as an efficient photoelectrode for solar-driven water splitting. A vertically oriented n-type ZnO nanorod array was first prepared on an indium-tin-oxide-coated glass substrate via a seed-mediated hydrothermal synthesis method and then a p-type $Cu_2O$ thin film was directly electrodeposited onto the vertically oriented ZnO nanorods array to form an oxide semiconductor heterostructure. The crystalline phases and morphologies of the heterojunction materials were characterized using X-ray diffraction and scanning electron microscopy as well as Raman scattering. The PEC properties of the fabricated $Cu_2O/ZnO$ p-n heterojunction photoelectrode were evaluated by photocurrent conversion efficiency measurements under white light illumination. From the observed PEC current density versus voltage (J-V) behavior, the $Cu_2O/ZnO$ photoelectrode was found to exhibit a negligible dark current and high photocurrent density, e.g., $0.77mA/cm^2$ at 0.5 V vs $Hg/HgCl_2$ in a $1mM\;Na_2SO_4$ electrolyte, revealing an effective operation of the oxide heterostructure. In particular, a significant PEC performance was observed even at an applied bias of 0 V vs $Hg/HgCl_2$, which made the device self-powered. The observed PEC performance was attributed to some synergistic effect of the p-n bilayer heterostructure on the formation of a built-in potential, including the light absorption and separation processes of photoinduced charge carriers.

Keywords

References

  1. C.-J. Winter, Int. J. Hydrogen Energy, 34, S1 (2009). https://doi.org/10.1016/j.ijhydene.2009.05.063
  2. K. Rajeshwar, J. Appl. Electrochem., 37, 765 (2007). https://doi.org/10.1007/s10800-007-9333-1
  3. S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z.-X. Guo and J. Tang, Energy Environ. Sci., 8, 731 (2015). https://doi.org/10.1039/C4EE03271C
  4. A. Fujishima and K. Honda, Nature, 238, 37 (1972). https://doi.org/10.1038/238037a0
  5. Z. Kang, X. Yan, Y. Wang, Z. Bai, Y. Liu, Z. Zhang, P. Lin, X. Zhang, H. Yuan, X. Zhang and Y. Zhang, Sci. Rep., 5, 7882 (2015). https://doi.org/10.1038/srep07882
  6. P. Lin, X. Chen, X. Yan, Z. Zhang, H. Yuan, P. Li, Y. Zhao and Y. Zhang, Nano Res., 7, 860 (2014). https://doi.org/10.1007/s12274-014-0447-6
  7. M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. More and S. Ogale, J. Mater. Chem., 22, 17055 (2012). https://doi.org/10.1039/c2jm32660d
  8. R.-C. Wang and H.-Y. Lin, Sens. Actuators B, 149, 94 (2010). https://doi.org/10.1016/j.snb.2010.06.025
  9. T. Jiang, T. Xie, L. Chen, Z. Fu and D. Wang, Nanoscale, 5, 2938 (2013). https://doi.org/10.1039/c3nr34219k
  10. S. T. Ren, G. H. Fan, M. L. Liang, Q. Wang and G. L. Zhao, J. Appl. Phys., 115, 064301 (2014). https://doi.org/10.1063/1.4863468
  11. Z. Zhang and P. Wang, J. Mater. Chem., 22, 2456 (2012). https://doi.org/10.1039/C1JM14478B
  12. S. J. A. Moniz, S. A. Shevin, D. J. Martin, Z.-X. Guo and J. Tang, Energy Environ. Sci., 8, 731 (2015). https://doi.org/10.1039/C4EE03271C
  13. D. Wang, X. Zhang, P. Sun, S. Lu, L. Wang, C. Wang and Y. Liu, Electrochim. Acta, 130, 290 (2014). https://doi.org/10.1016/j.electacta.2014.03.024
  14. S. Kim, H. Kim, S.-K. Hong and D. Kim, Korean J. Mater. Res., 26, 604 (2016). https://doi.org/10.3740/MRSK.2016.26.11.604
  15. L. Liu, K. Hong, T. Hu and M. Xu, J. Alloys Compd., 511, 195 (2012). https://doi.org/10.1016/j.jallcom.2011.09.028
  16. P. E. de Jongh, D. Vanmaekelbergh and J. J. Kelly, Chem. Mater., 11, 3512 (1999). https://doi.org/10.1021/cm991054e
  17. P. Y. Yu, Y. R. Shen and Y. Petroff, Solid State Commun., 12, 973 (1973). https://doi.org/10.1016/0038-1098(73)90018-5
  18. P. Y. Yu and Y. R. Shen, Phys. Rev. B, 12, 1377 (1975). https://doi.org/10.1103/PhysRevB.12.1377
  19. R. Zhang, P.-G. Yin, N. Wang and L. Guo, Solid State Sci., 11, 865 (2009). https://doi.org/10.1016/j.solidstatesciences.2008.10.016
  20. Z. Chen, H. N. Dinh and E. Miller, Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols, p. 10, Springer, New York (2013).