DOI QR코드

DOI QR Code

Characteristics of Indium Tin Zinc Oxide Thin Film Transistors with Plastic Substrates

고분자 기판과 PECVD 절연막에 따른 ITZO 박막 트랜지스터의 특성 분석

  • Yang, Dae-Gyu (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Hyoung-Do (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Jong-Heon (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Hyun-Suk (Department of Materials Science and Engineering, Chungnam National University)
  • 양대규 (충남대학교 신소재공학과) ;
  • 김형도 (충남대학교 신소재공학과) ;
  • 김종헌 (충남대학교 신소재공학과) ;
  • 김현석 (충남대학교 신소재공학과)
  • Received : 2018.02.21
  • Accepted : 2018.04.02
  • Published : 2018.04.27

Abstract

We examined the characteristics of indium tin zinc oxide (ITZO) thin film transistors (TFTs) on polyimide (PI) substrates for next-generation flexible display application. In this study, the ITZO TFT was fabricated and analyzed with a SiOx/SiNx gate insulator deposited using plasma enhanced chemical vapor deposition (PECVD) below $350^{\circ}C$. X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) results revealed that the oxygen vacancies and impurities such as H, OH and $H_2O$ increased at ITZO/gate insulator interface. Our study suggests that the hydrogen related impurities existing in the PI and gate insulator were diffused into the channel during the fabrication process. We demonstrate that these impurities and oxygen vacancies in the ITZO channel/gate insulator may cause degradation of the electrical characteristics and bias stability. Therefore, in order to realize high performance oxide TFTs for flexible displays, it is necessary to develop a buffer layer (e.g., $Al_2O_3$) that can sufficiently prevent the diffusion of impurities into the channel.

Keywords

References

  1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). https://doi.org/10.1038/nature03090
  2. H. Hosono, J. Non-Cryst. Solids., 352, 851 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.01.073
  3. J. Seo, K.-Y. Cho, and H. Han, Polym. Degrad. Stab., 74, 133 (2001). https://doi.org/10.1016/S0141-3910(01)00113-6
  4. H. Gleskova and S. Wanger, IEEE Electron Device Lett., 20, 473 (1999). https://doi.org/10.1109/55.784456
  5. Y. R. Denny, K. Lee, S. Seo, S. K. Oh, H. J. Kang, D. S. Yang, S. Heo, J. G. Chung, and J. C. Lee, Appl. Surf. Sci., 315, 454 (2014). https://doi.org/10.1016/j.apsusc.2014.03.047
  6. T. Sziirhyi, L. D. Laude, I. Bertoti, Z. S. Geretovszky, and Z. Kantor, Apply. Surf. Sci., 96, 363 (1996).
  7. J. Lee, J.-S, Park, Y. S. Pyo, D. B. Lee, E. H. Kim, D. Stryakhilev, T. W. Kim, D. U. Jin, and Y.-G. Mo, Appl. Phys. Lett., 95, 123502 (2009). https://doi.org/10.1063/1.3232179
  8. A. Heya and N. Matsuo, Thin Solid Films, 625, 93 (2017). https://doi.org/10.1016/j.tsf.2017.01.061
  9. D. G. Yang, H. D. Kim, J. H. Kim, S. W. Lee, J. P, Y. J. Kim, and H.-S. Kim, Thin Solid Films, 638, 361 (2017). https://doi.org/10.1016/j.tsf.2017.08.008
  10. K.-C. Ok, S.-H. K. Park, C.-S. Hwang, H. Kim, H. S. Shin, J. B, and J.-S. Park, Appl. Phys. Lett., 104, 063508 (2014). https://doi.org/10.1063/1.4864617
  11. B. Ryu, H. K. Noh, E. A. Choi, and K. J. Chang, Appl. Phys. Lett., 97, 2108 (2010).
  12. Y.-H. Chang, M.-J. Yu, R.-P. Lin, C.-P. Hsu, and T.-H. Hou, Apply. Phys. Lett., 108, 033502 (2016). https://doi.org/10.1063/1.4939905