DOI QR코드

DOI QR Code

Intraoperative Neurophysiological Monitoring : A Review of Techniques Used for Brain Tumor Surgery in Children

  • Kim, Keewon (Department of Rehabilitation Medicine, Seoul National University Children's Hospital, Seoul National University College of Medicine) ;
  • Cho, Charles (Department of Neurology, Stanford University) ;
  • Bang, Moon-suk (Department of Rehabilitation Medicine, Seoul National University Children's Hospital, Seoul National University College of Medicine) ;
  • Shin, Hyung-ik (Department of Rehabilitation Medicine, Seoul National University Children's Hospital, Seoul National University College of Medicine) ;
  • Phi, Ji-Hoon (Department of Neurology, Stanford University) ;
  • Kim, Seung-Ki (Department of Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine)
  • Received : 2018.04.05
  • Accepted : 2018.04.16
  • Published : 2018.05.01

Abstract

Intraoperative monitoring (IOM) utilizes electrophysiological techniques as a surrogate test and evaluation of nervous function while a patient is under general anesthesia. They are increasingly used for procedures, both surgical and endovascular, to avoid injury during an operation, examine neurological tissue to guide the surgery, or to test electrophysiological function to allow for more complete resection or corrections. The application of IOM during pediatric brain tumor resections encompasses a unique set of technical issues. First, obtaining stable and reliable responses in children of different ages requires detailed understanding of normal age-adjusted brain-spine development. Neurophysiology, anatomy, and anthropometry of children are different from those of adults. Second, monitoring of the brain may include risk to eloquent functions and cranial nerve functions that are difficult with the usual neurophysiological techniques. Third, interpretation of signal change requires unique sets of normative values specific for children of that age. Fourth, tumor resection involves multiple considerations including defining tumor type, size, location, pathophysiology that might require maximal removal of lesion or minimal intervention. IOM techniques can be divided into monitoring and mapping. Mapping involves identification of specific neural structures to avoid or minimize injury. Monitoring is continuous acquisition of neural signals to determine the integrity of the full longitudinal path of the neural system of interest. Motor evoked potentials and somatosensory evoked potentials are representative methodologies for monitoring. Free-running electromyography is also used to monitor irritation or damage to the motor nerves in the lower motor neuron level : cranial nerves, roots, and peripheral nerves. For the surgery of infratentorial tumors, in addition to free-running electromyography of the bulbar muscles, brainstem auditory evoked potentials or corticobulbar motor evoked potentials could be combined to prevent injury of the cranial nerves or nucleus. IOM for cerebral tumors can adopt direct cortical stimulation or direct subcortical stimulation to map the corticospinal pathways in the vicinity of lesion. IOM is a diagnostic as well as interventional tool for neurosurgery. To prove clinical evidence of it is not simple. Randomized controlled prospective studies may not be possible due to ethical reasons. However, prospective longitudinal studies confirming prognostic value of IOM are available. Furthermore, oncological outcome has also been shown to be superior in some brain tumors, with IOM. New methodologies of IOM are being developed and clinically applied. This review establishes a composite view of techniques used today, noting differences between adult and pediatric monitoring.

Keywords

References

  1. Anderson S, Loughnan B, Hetreed M : A technique for monitoring evoked potentials during scoliosis and brachial plexus surgery. Ann R Coll Surg Engl 72 : 321-323, 1990
  2. Angel A, GRATTON DA : The effect of anaesthetic agents on cerebral cortical responses in the rat. Br J Pharmacol 76 : 541-549, 1982 https://doi.org/10.1111/j.1476-5381.1982.tb09252.x
  3. Brell M, Ibanez J, Caral L, Ferrer E : Factors influencing surgical complications of intra-axial brain tumours. Acta Neurochir (Wien) 142 : 739-750, 2000 https://doi.org/10.1007/s007010070088
  4. Burke D, Hicks R, Stephen J, Woodforth I, Crawford M : Assessment of corticospinal and somatosensoty conduction simultaneously during scoliosis surgery. Electroencephalogr Clin Neurophysiol 85 : 388-396, 1992 https://doi.org/10.1016/0168-5597(92)90052-D
  5. Calancie B, Harris W, Broton JG, Alexeeva N, Green BA : "Threshold-level" multipulse transcranial electrical stimulation of motor cortex for intraoperative monitoring of spinal motor tracts: description of method and comparison to somatosensory evoked potential monitoring. J Neurosurg 88 : 457-470, 1998 https://doi.org/10.3171/jns.1998.88.3.0457
  6. Chang SD, Lopez JR, Steinberg GK : Intraoperative electrical stimulation for identification of cranial nerve nuclei. Muscle Nerve 22 : 1538-1543, 1999 https://doi.org/10.1002/(SICI)1097-4598(199911)22:11<1538::AID-MUS8>3.0.CO;2-0
  7. De Witt Hamer PC, Robles SG, Zwinderman AH, Duffau H, Berger MS : Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol 30 : 2559-2565, 2012 https://doi.org/10.1200/JCO.2011.38.4818
  8. Debatisse D, Pralong E, Guerit J, Bisdorff A : Recording click-evoked myogenic potentials (CEMPs) with a setup for brainstem auditory evoked potentials (BAEPs). Neurophysiol Clin 35 : 109-117, 2005 https://doi.org/10.1016/j.neucli.2005.09.001
  9. Deletis V, Shils J : Neurophysiology in neurosurgery. New York : Elsevier, 2002, pp25-51
  10. Deletis V, Rodi Z, Amassian VE : Neurophysiological mechanisms underlying motor evoked potentials in anesthetized humans. Part 2. relationship between epidurally and muscle recorded MEPs in man. Clin Neurophysiol 112 : 445-452, 2001 https://doi.org/10.1016/S1388-2457(00)00557-5
  11. Deletis V, Rogic M, Fernandez-Conejero I, Gabarros A, Jeroncic A : Neurophysiologic markers in laryngeal muscles indicate functional anatomy of laryngeal primary motor cortex and premotor cortex in the caudal opercular part of inferior frontal gyrus. Clin Neurophysiol 125 : 1912-1922, 2014 https://doi.org/10.1016/j.clinph.2014.01.023
  12. Deletis V, Sala F : Intraoperative neurophysiological monitoring of the spinal cord during spinal cord and spine surgery: a review focus on the corticospinal tracts. Clin Neurophysiol 119 : 248-264, 2008 https://doi.org/10.1016/j.clinph.2007.09.135
  13. Dong CC, MacDonald DB, Akagami R, Westerberg B, AlKhani A, Kanaan I, et al. : Intraoperative facial motor evoked potential monitoring with transcranial electrical stimulation during skull base surgery. Clin Neurophysiol 116 : 588-596, 2005 https://doi.org/10.1016/j.clinph.2004.09.013
  14. Dubois MY, Sato S, Chassy J, Macnamara TE : Effects of enflurane on brainstem auditory evoked responses in humans. Anesth Analg 61 : 898-902, 1982
  15. Duffau H, Lopes M, Gatignol P, Mandonnet E, Taillandier L, Leroy M, et al. : 745 contribution of intraoperative corticosubcortical stimulations in surgery of low-grade gliomas: a comparative study between two series without and with functional mapping. Neurosurgery 55 : 467, 2004
  16. Eggermont J : Physiology of the developing auditory system in Sandra E Trehub, Bruce Schneider (eds) : Auditory development in infancy. New York : Springer, 1985, pp21-45
  17. Eisner W, Schmid UD, Reulen HJ, Oeckler R, Olteanu-Nerbe V, Gall C, et al. : The mapping and continuous monitoring of the intrinsic motor nuclei during brain stem surgery. Neurosurgery 37 : 255-265, 1995 https://doi.org/10.1227/00006123-199508000-00010
  18. Ferber-Viart C, Dubreuil C, Duclaux R : Vestibular evoked myogenic potentials in humans: a review. Acta Otolaryngol 119 : 6-15, 1999 https://doi.org/10.1080/00016489950181864-1
  19. Ferber-Viart C, Duclaux R, Colleaux B, Dubreuil C : Myogenic vestibularevoked potentials in normal subjects: a comparison between responses obtained from sternomastoid and trapezius muscles. Acta Otolaryngol 117 : 472-481, 1997 https://doi.org/10.3109/00016489709113424
  20. Frei FJ, Ryhult SE, Duitmann E, Hasler CC, Luetschg J, Erb TO : Intraoperative monitoring of motor-evoked potentials in children undergoing spinal surgery. Spine (Phila Pa 1976) 32 : 911-917, 2007 https://doi.org/10.1097/01.brs.0000259836.84151.75
  21. Fulkerson DH, Satyan KB, Wilder LM, Riviello JJ, Stayer SA, Whitehead WE, et al. : Intraoperative monitoring of motor evoked potentials in very young children. J Neurosurg Pediatr 7 : 331-337, 2011 https://doi.org/10.3171/2011.1.PEDS10255
  22. Goldring S : A method for surgical management of focal epilepsy, especially as it relates to children. J Neurosurg 49 : 344-356, 1978 https://doi.org/10.3171/jns.1978.49.3.0344
  23. Goldring S, Gregorie EM : Surgical management of epilepsy using epidural recordings to localize the seizure focus: review of 100 cases. J Neurosurg 60 : 457-466, 1984 https://doi.org/10.3171/jns.1984.60.3.0457
  24. Gunnarsson T, Krassioukov AV, Sarjeant R, Fehlings MG : Real-time continuous intraoperative electromyographic and somatosensory evoked potential recordings in spinal surgery: correlation of clinical and electrophysiologic findings in a prospective, consecutive series of 213 cases. Spine (Phila Pa 1976) 29 : 677-684, 2004 https://doi.org/10.1097/01.BRS.0000115144.30607.E9
  25. Halonen JP, Jones SJ, Edgar MA, Ransford AO : Conduction properties of epidurally recorded spinal cord potentials following lower limb stimulation in man. Electroencephalogr Clin Neurophysiol 74 : 161-174, 1989 https://doi.org/10.1016/0013-4694(89)90002-3
  26. Helmers SL, Hall JE : Intraoperative somatosensory evoked potential monitoring in pediatrics. J Pediatr Orthop 14 : 592-598, 1994 https://doi.org/10.1097/01241398-199409000-00007
  27. Hicks RG, Burke DJ, Stephen JP : Monitoring spinal cord function during scoliosis surgery with Cotrel-Dubousset instrumentation. Med J Aust 154 : 82-86, 1991
  28. Hwang H, Wang KC, Bang MS, Shin HI, Kim SK, Phi JH, et al. : Optimal stimulation parameters for intraoperative bulbocavernosus reflex in infants. J Neurosurg Pediatr 20 : 464-470, 2017 https://doi.org/10.3171/2017.6.PEDS16664
  29. James MFM, Thornton C, Jones JG : Halothane anaesthesia changes the early components of the auditory evoked response in man. Br J Anaesth 54 : 787, 1982
  30. Jasper H : Electrocorticograms in man. Electroencephalogr Clin Neurophysiol 2 : 16-29, 1949
  31. Jimenez JC, Sani S, Braverman B, Deutsch H, Ratliff JK : Palsies of the fifth cervical nerve root after cervical decompression: prevention using continuous intraoperative electromyography monitoring. J Neurosurg Spine 3 : 92-97, 2005 https://doi.org/10.3171/spi.2005.3.2.0092
  32. Jones S, Harrison R, Koh K, Mendoza N, Crockard H : Motor evoked potential monitoring during spinal surgery: responses of distal limb muscles to transcranial cortical stimulation with pulse trains. Electroencephalogr Clin Neurophysiol 100 : 375-383, 1996 https://doi.org/10.1016/0168-5597(96)95728-7
  33. Kalkman CJ, Drummond JC, Ribberink AA : Low concentrations of isoflurane abolish motor evoked responses to transcranial electrical stimulation during nitrous oxide/opioid anesthesia in humans. Anesth Analg 73 : 410-415, 1991
  34. Levy SR : Somatosensory Evoked Potentials in Chiappa KH (ed) : Evoked potentials in clinical medicine, ed 3. Philadelphia : Lippincott-Raven, 1997, pp453-466
  35. Lo YL, Dan YF, Tan YE, Nurjannah S, Tan SB, Tan CT, et al. : Intraoperative motor-evoked potential monitoring in scoliosis surgery: comparison of desflurane/nitrous oxide with propofol total intravenous anesthetic regimens. J Neurosurg Anesthesiol 18 : 211-214, 2006 https://doi.org/10.1097/01.ana.0000211007.94269.50
  36. Maguire J, Wallace S, Madiga R, Leppanen R, Draper V : Evaluation of intrapedicular screw position using intraoperative evoked electromyography. Spine (Phila Pa 1976) 20 : 1068-1074, 1995 https://doi.org/10.1097/00007632-199505000-00015
  37. Manninen PH, Patterson S, Lam AM, Gelb AW, Nantau WE : Evoked potential monitoring during posterior fossa aneurysm surgery: a comparison of two modalities. Can J Anaesth 41 : 92-97, 1994 https://doi.org/10.1007/BF03009798
  38. Marshall C, Walker AE : Electrocorticography. Bull Johns Hopkins Hosp85 : 344-359, 1949
  39. Matthies C, Samii M : Management of vestibular schwannomas (acoustic neuromas): the value of neurophysiology for intraoperative monitoring of auditory function in 200 cases. Neurosurgery 40 : 459-466; discussion 466-468, 1997
  40. Merton P, Morton H : Stimulation of the cerebral cortex in the intact human subject. Nature 285 : 227, 1980 https://doi.org/10.1038/285227a0
  41. Moller MB, Moller AR : Loss of auditory function in microvascular decompression for hemifacial spasm: results in 143 consecutive cases. J Neurosurg 63 : 17-20, 1985 https://doi.org/10.3171/jns.1985.63.1.0017
  42. Morota N, Deletis V, Constantini S, Kofler M, Cohen H, Epstein FJ : The role of motor evoked potentials during surgery for intramedullary spinal cord tumors. Neurosurgery 41 : 1327-1336, 1997 https://doi.org/10.1097/00006123-199712000-00017
  43. Morota N, Deletis V, Epstein FJ, Kofler M, Abbott R, Lee M, et al. : Brain stem mapping: neurophysiological localization of motor nuclei on the floor of the fourth ventricle. Neurosurgery 37 : 922-929; discussion 929-930, 1995 https://doi.org/10.1227/00006123-199511000-00011
  44. Nash CL Jr, Brodkey J : Clinical application of spinal-cord monitoring for operative treatment of spinal disease. Cleveland : Case Western Reserve University, 1977, p140
  45. Nash CL Jr, Lorig RA, Schatzinger LA, Brown RH : Spinal cord monitoring during operative treatment of the spine. Clin Orthop Relat Res (126) : 100-105, 1977
  46. Nash CL Jr, Schatzinger L, Lorig R : Intraoperative monitoring of spinal cord function during scoliosis spine surgery. J Bone Joint Surg Am 56 : 765, 1974
  47. Neu M, Strauss C, Romstock J, Bischoff B, Fahlbusch R : The prognostic value of intraoperative BAEP patterns in acoustic neurinoma surgery. Clin Neurophysiol 110 : 1935-1941, 1999 https://doi.org/10.1016/S1388-2457(99)00148-0
  48. Nguyen BH, Javel E, Levine SC : Physiologic identification of eighth nerve subdivisions: direct recordings with bipolar and monopolar electrodes. Am J Otol 20 : 522-534, 1999
  49. Nuwer M, Dawson E : Intraoperative evoked potential monitoring of the spinal cord: enhanced stability of cortical recordings. Electroencephalogr Clin Neurophysiol 59 : 318-327, 1984 https://doi.org/10.1016/0168-5597(84)90049-2
  50. Nuwer MR, Aminoff M, Desmedt J, Eisen AA, Goodin D, Matsuoka S, et al. : IFCN recommended standards for short latency somatosensory evoked potentials. Report of an IFCN committee. International federation of clinical neurophysiology. Electroencephalogr Clin Neurophysiol 91 : 6-11, 1994 https://doi.org/10.1016/0013-4694(94)90012-4
  51. Nuwer MR, Dawson EG, Carlson LG, Kanim LE, Sherman JE : Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol 96 : 6-11, 1995 https://doi.org/10.1016/0013-4694(94)00235-D
  52. Nuwer MR, Emerson RG, Galloway G, Legatt AD, Lopez J, Minahan R, et al. : Evidence-based guideline update: intraoperative spinal monitoring with somatosensory and transcranial electrical motor evoked potentials report of the therapeutics and technology assessment subcommittee of the American Academy of Neurology and the American Clinical Neurophysiology Society. Neurology 78 : 585-589, 2012 https://doi.org/10.1212/WNL.0b013e318247fa0e
  53. Ohue S, Kohno S, Inoue A, Yamashita D, Harada H, Kumon Y, et al. : Accuracy of diffusion tensor magnetic resonance imaging-based tractography for surgery of gliomas near the pyramidal tract: a significant correlation between subcortical electrical stimulation and postoperative tractography. Neurosurgery 70 : 283-293; discussion 294, 2012 https://doi.org/10.1227/NEU.0b013e31823020e6
  54. Sawaya R, Hammoud M, Schoppa D, Hess KR, Wu SZ, Shi WM, et al. : Neurosurgical outcomes in a modern series of 400 craniotomies for treatment of parenchymal tumors. Neurosurgery 42 : 1044-1055; discussion 1055-1056, 1998 https://doi.org/10.1097/00006123-199805000-00054
  55. Pechstein U, Cedzich C, Nadstawek J, Schramm J : Transcranial highfrequency repetitive electrical stimulation for recording myogenic motor evoked potentials with the patient under general anesthesia. Neurosurgery 39 : 335-343; discussion 343-344, 1996 https://doi.org/10.1097/00006123-199608000-00020
  56. Penfield W, Boldrey E : Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60 : 389-443, 1937 https://doi.org/10.1093/brain/60.4.389
  57. Prell J, Rampp S, Romstock J, Fahlbusch R, Strauss C : Train time as a quantitative electromyographic parameter for facial nerve function in patients undergoing surgery for vestibular schwannoma. J Neurosurg 106 : 826-832, 2007 https://doi.org/10.3171/jns.2007.106.5.826
  58. Purdon PL, Sampson A, Pavone KJ, Brown EN : Clinical electroencephalography for anesthesiologists: part I: background and basic signatures. Anesthesiology 123 : 937-960, 2015 https://doi.org/10.1097/ALN.0000000000000841
  59. Raabe A, Beck J, Schucht P, Seidel K : Continuous dynamic mapping of the corticospinal tract during surgery of motor eloquent brain tumors: evaluation of a new method. J Neurosurg 120 : 1015-1024, 2014 https://doi.org/10.3171/2014.1.JNS13909
  60. Radtke RA, Erwin CW, Wilkins RH : Intraoperative brainstem auditory evoked potentials: significant decrease in postoperative morbidity. Neurology 39(2 Pt 1) : 187-191, 1989 https://doi.org/10.1212/WNL.39.2.187
  61. Romstock J, Strauss C, Fahlbusch R : Continuous electromyography monitoring of motor cranial nerves during cerebellopontine angle surgery. J Neurosurg 93 : 586-593, 2000 https://doi.org/10.3171/jns.2000.93.4.0586
  62. Saito T, Tamura M, Muragaki Y, Maruyama T, Kubota Y, Fukuchi S, et al. : Intraoperative cortico-cortical evoked potentials for the evaluation of language function during brain tumor resection: initial experience with 13 cases. J Neurosurg 121 : 827-838, 2014 https://doi.org/10.3171/2014.4.JNS131195
  63. Schucht P, Seidel K, Beck J, Murek M, Jilch A, Wiest R, et al. : Intraoperative monopolar mapping during 5-ALA-guided resections of glioblastomas adjacent to motor eloquent areas: evaluation of resection rates and neurological outcome. Neurosurg focus 37 : E16, 2014
  64. Sharbrough FW, Messick JM Jr, Sundt TM Jr : Correlation of continuous electroencephalograms with cerebral blood flow measurements during carotid endarterectomy. Stroke 4 : 674-683, 1973 https://doi.org/10.1161/01.STR.4.4.674
  65. Simon MV, Chiappa KH, Borges LF : Phase reversal of somatosensory evoked potentials triggered by gracilis tract stimulation: case report of a new technique for neurophysiologic dorsal column mapping. Neurosurgery 70 : E783-E788, 2012 https://doi.org/10.1227/NEU.0b013e31822e0a76
  66. Slimp JC : Electrophysiologic intraoperative monitoring for spine procedures. Phys Med Rehabil Clin N Am 15 : 85-105, 2004 https://doi.org/10.1016/S1047-9651(03)00106-2
  67. Sloan T : Anesthesia and intraoperative neurophysiological monitoring in children. Childs Nerv Syst 26 : 227-235, 2010 https://doi.org/10.1007/s00381-009-1023-3
  68. Stone JL, Ghaly RF, Levy WJ, Kartha R, Krinsky L, Roccaforte P : A comparative analysis of enflurane anesthesia on primate motor and somatosensory evoked potentials. Electroencephalogr Clin Neurophysiol 84 : 180-187, 1992 https://doi.org/10.1016/0168-5597(92)90023-5
  69. Strauss C, Romstock J, Nimsky C, Fahlbusch R : Intraoperative identification of motor areas of the rhomboid fossa using direct stimulation. J Neurosurg 79 : 393-399, 1993 https://doi.org/10.3171/jns.1993.79.3.0393
  70. Szelenyi A, Joksimovic B, Seifert V : Intraoperative risk of seizures associated with transient direct cortical stimulation in patients with symptomatic epilepsy. J Clin Neurophysiol 24 : 39-43, 2007 https://doi.org/10.1097/01.wnp.0000237073.70314.f7
  71. Szelenyi A, Senft C, Jardan M, Forster M, Franz K, Seifert V, et al. : Intraoperative subcortical electrical stimulation : a comparison of two methods. Clin Neurophysiol 122 : 1470-1475, 2011 https://doi.org/10.1016/j.clinph.2010.12.055
  72. Tanaka Y, Kawaguchi M, Noguchi Y, Yoshitani K, Kawamata M, Masui K, et al. : Systematic review of motor evoked potentials monitoring during thoracic and thoracoabdominal aortic aneurysm open repair surgery: a diagnostic meta-analysis. J Anesth 30 : 1037-1050, 2016 https://doi.org/10.1007/s00540-016-2242-x
  73. Taniguchi M, Cedzich C, Schramm J : Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery 32 : 219-226, 1993 https://doi.org/10.1227/00006123-199302000-00011
  74. Taniguchi M, Nadstawek J, Pechstein U, Schramm J : Total intravenous anesthesia for improvement of intraoperative monitoring of somatosensory evoked potentials during aneurysm surgery. Neurosurgery 31 : 891-897; discussion 897, 1992 https://doi.org/10.1227/00006123-199211000-00010
  75. Thompson JE : Surgery for cerebrovascular insufficiency (stroke): with special emphasis on carotid endarterectomy. Springfield : Thomas, 1968
  76. Wood CC, Spencer DD, Allison T, McCarthy G, Williamson PD, Goff WR : Localization of human sensorimotor cortex during surgery by cortical surface recording of somatosensory evoked potentials. J Neurosurg 68 : 99-111, 1988 https://doi.org/10.3171/jns.1988.68.1.0099
  77. Wylie EJ, Ehrenfeld WK : Extracranial occlusive cerebrovascular disease: diagnosis and management. Philadelphia : WB Saunders Company, 1970
  78. Yanni DS, Ulkatan S, Deletis V, Barrenechea IJ, Sen C, Perin NI : Utility of neurophysiological monitoring using dorsal column mapping in intramedullary spinal cord surgery. J Neurosurg Spine 12 : 623-628, 2010 https://doi.org/10.3171/2010.1.SPINE09112

Cited by

  1. Pediatric Central Nervous System Tumors: State-of-the-Art and Debated Aspects vol.6, pp.None, 2018, https://doi.org/10.3389/fped.2018.00309
  2. Postoperative Tetraplegia to a Child after Cerebellar Pilocytic Astrocytoma Excision at Prone Position: Case Report and Literature Review vol.21, pp.None, 2018, https://doi.org/10.12659/ajcr.920213
  3. Early Detection of the Internal Capsule Infarction by Intraoperative Neuromonitoring in Mesial Temporal Epilepsy Surgery vol.38, pp.4, 2018, https://doi.org/10.17340/jkna.2020.4.5
  4. Technical Considerations in Awake Craniotomy with Cortical and Subcortical Motor Mapping in Preadolescents: Pushing the Envelope vol.56, pp.2, 2021, https://doi.org/10.1159/000513004
  5. Intraoperative neurophysiological monitoring in paediatric neurosurgery vol.75, pp.8, 2018, https://doi.org/10.1111/ijcp.14160