DOI QR코드

DOI QR Code

Increased Gamma-band Neural Synchrony by Pleasant and Unpleasant Visual Stimuli

긍정, 부정 감정 유발 시각자극에 의한 감마-대역 신경동기화 증가

  • Yeo, Donghoon (Department of Biomedical Engineering, College of Health Science, Yonsei University) ;
  • Choi, Jeong Woo (Department of Biomedical Engineering, College of Health Science, Yonsei University) ;
  • Kim, Kyung Hwan (Department of Biomedical Engineering, College of Health Science, Yonsei University)
  • 여동훈 (연세대학교 보건과학대학 의공학과) ;
  • 최정우 (연세대학교 보건과학대학 의공학과) ;
  • 김경환 (연세대학교 보건과학대학 의공학과)
  • Received : 2018.02.22
  • Accepted : 2018.04.22
  • Published : 2018.04.30

Abstract

It is known that gamma-band activity (GBA) and phase synchrony (GBPS) are induced by emotional visual stimuli. However, the characteristics of GBA and GBPS according to different emotional states have not been identified. The purpose of this study is to investigate the changes in gamma-band neuronal synchronization induced by positive and negative emotional visual stimuli using electroencephalograms (EEGs). Thirteen healthy male subjects have participated in the experiment. The induced spectral power in gamma-band was the highest for negative stimuli, and the lowest for neutral stimuli in 300-2,000 ms after the stimulus onset. The inter-regional phase synchronization in gamma-band was increased in 500-2,000 ms, mainly between the bilateral frontal regions and the parieto-occipital regions. Larger number of significant connections were found by negative stimuli compared to positive ones. Judging from temporal and spatial characteristics of the gamma-band activity and phase synchrony increases, the results may imply that affective visual stimuli cause stronger memory encoding than non-emotional stimuli, and this effect is more significant for negative emotional stimuli than positive ones.

Keywords

References

  1. D. H. Blackwood and W. J. Muir, "Cognitive brain potentials and their application.," Br. J. Psychiatry. Suppl., no. 9, pp. 96-101, 1990.
  2. J. K. Olofsson, S. Nordin, H. Sequeira, and J. Polich, "Affective picture processing: An integrative review of ERP findings," Biol. Psychol., vol. 77, no. 3, pp. 247-265, 2008. https://doi.org/10.1016/j.biopsycho.2007.11.006
  3. M. M. Muller, A. Keil, T. Gruber, and T. Elbert, "Processing of affective pictures modulates right-hemisphere gamma band activity," Clin. Neurophysiol., vol. 110, pp. 1913-1920, 1999. https://doi.org/10.1016/S1388-2457(99)00151-0
  4. A. Keil, M. M. Muller, T. Gruber, C. Wienbruch, M. Stolarova, and T. Elbert, "Effects of emotional arousal in the cerebral hemispheres: A study of oscillatory brain activity and event-related potentials," Clin. Neurophysiol., vol. 112, no. 11, pp. 2057-2068, 2001. https://doi.org/10.1016/S1388-2457(01)00654-X
  5. H. Oya, H. Kawasaki, M. A. Howard, and R. Adolphs, "Electrophysiological responses in the human amygdala discriminate emotion categories of complex visual stimuli.," J. Neurosci., vol. 22, no. 21, pp. 9502-9512, 2002. https://doi.org/10.1523/JNEUROSCI.22-21-09502.2002
  6. A. Keil, M. Stolarova, S. Moratti, and W. J. Ray, "Adaptation in human visual cortex as a mechanism for rapid discrimination of aversive stimuli," Neuroimage, vol. 36, no. 2, pp. 472-479, 2007. https://doi.org/10.1016/j.neuroimage.2007.02.048
  7. A. Matsumoto, Y. Ichikawa, N. Kanayama, H. Ohira, and T. Iidaka, "Gamma band activity and its synchronization reflect the dysfunctional emotional processing in alexithymic persons," Psychophysiology, vol. 43, no. 6, pp. 533-540, 2006. https://doi.org/10.1111/j.1469-8986.2006.00461.x
  8. M. Garcia-Garcia, J. Yordanova, V. Kolev, J. Dominguez- Borras, and C. Escera, "Tuning the brain for novelty detection under emotional threat: The role of increasing gamma phase-synchronization," Neuroimage, vol. 49, no. 1, pp. 1038-1044, 2010. https://doi.org/10.1016/j.neuroimage.2009.07.059
  9. B. Guntekin and E. Tulay, "Event related beta and gamma oscillatory responses during perception of affective pictures," Brain Res., vol. 1577, pp. 45-56, 2014. https://doi.org/10.1016/j.brainres.2014.06.029
  10. F. Varela, J. P. Lachaux, E. Rodriguez, and J. Martinerie, "The brainweb: phase synchronization and large-scale integration.," Nat. Rev. Neurosci., vol. 2, no. 4, pp. 229-239, 2001. https://doi.org/10.1038/35067550
  11. N. Martini, D. Menicucci, L. Sebastiani, R. Bedini, A. Pingitore, N. Vanello, M. Milanesi, L. Landini, and A. Gemignani, "The dynamics of EEG gamma responses to unpleasant visual stimuli: From local activity to functional connectivity," Neuroimage, vol. 60, no. 2, pp. 922-932, 2012. https://doi.org/10.1016/j.neuroimage.2012.01.060
  12. C. S. Herrmann, M. H. J. Munk, and A. K. Engel, "Cognitive functions of gamma-band activity: Memory match and utilization," Trends Cogn. Sci., vol. 8, no. 8, pp. 347-355, 2004. https://doi.org/10.1016/j.tics.2004.06.006
  13. P. J. Lang, M. M. Bradley, and B. N. Cuthbert, "International Affective Picture System (IAPS): Technical Manual and Affective Ratings," NIMH Cent. Study Emot. Atten., pp. 39-58, 1997.
  14. A. Delorme and S. Makeig, "EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis," J. Neurosci. Methods, vol. 134, no. 1, pp. 9-21, 2004. https://doi.org/10.1016/j.jneumeth.2003.10.009
  15. T. P. Jung, S. Makeig, C. Humphries, T. W. Lee, J. McKeown, Martin, V. Iragui, and T. J. Sejnowski, "Removing electroencephalographic artifacts by blind source separation," Psychophysiology, vol. 37, no. 2, pp. 163-178, 2000. https://doi.org/10.1016/S0167-8760(00)00088-X
  16. C. Tallon-Baudry and O. Bertrand, "Oscillatory gamma activity in humans and its role in object representation," Trends Cogn. Sci., vol. 3, no. 4, pp. 151-162, 1999. https://doi.org/10.1016/S1364-6613(99)01299-1
  17. T. W. Picton, "Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria," Psychophysiology, vol. 37, no. 2, pp. 127-152, 2000. https://doi.org/10.1111/1469-8986.3720127
  18. J. P. Lachaux, E. Rodriguez, J. Martinerie, and F. J. Varela, "Measuring phase synchrony in brain signals.," Hum. Brain Mapp., vol. 8, no. 4, pp. 194-208, 1999. https://doi.org/10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
  19. K. H. Kim, J. Yoon, J. H. Kim, and K. Y. Jung, "Changes in gamma-band power and phase synchronization with the difficulty of a visual oddball task," Brain Res., vol. 1236, pp. 105-112, 2008. https://doi.org/10.1016/j.brainres.2008.07.118
  20. S. Karakas and E. Basar, "Early gamma response is sensory in origin: A conclusion based on cross- comparison of results from multiple experimental paradigms," Int. J. Psychophysiol., vol. 31, no. 1, pp. 13-31, 1998. https://doi.org/10.1016/S0167-8760(98)00030-0
  21. E. Basar, "Multiple oscillations and phase locking in human gamma responses: An essay in search of Eigenvalues," NeuroQuantology, vol. 10, no. 4, pp. 606-618, 2012.
  22. B. Guntekin and E. Basar, "A review of brain oscillations in perception of faces and emotional pictures," Neuropsychologia, vol. 58, no. 1, pp. 33-51, 2014. https://doi.org/10.1016/j.neuropsychologia.2014.03.014
  23. H. T. Schupp, B. N. Cuthbert, M. M. Bradley, C. H. Hillman, A. O. Hamm, and P. J. Lang, "Brain processes in emotional perception: Motivated attention," Cogn. Emot., vol. 18, no. 5, pp. 593-611, 2004. https://doi.org/10.1080/02699930341000239
  24. L. Pessoa, "On the relationship between emotion and cognition.," Nat. Rev. Neurosci., vol. 9, no. 2, pp. 148-58, 2008. https://doi.org/10.1038/nrn2317
  25. J. R. Zadra and G. L. Clore, "Emotion and perception: The role of affective information," Wiley Interdiscip. Rev. Cogn. Sci., vol. 2, no. 6, pp. 676-685, 2011. https://doi.org/10.1002/wcs.147
  26. C. Zhu, W. He, Z. Qi, L. Wang, D. Song, L. Zhan, S. Yi, Y. Luo, and W. Luo, "The time course of emotional picture processing: an event-related potential study using a rapid serial visual presentation paradigm," Front. Psychol., vol. 6, no. July, pp. 1-10, 2015.
  27. Y. X. Huang and Y. J. Luo, "Temporal course of emotional negativity bias: An ERP study," Neurosci. Lett., vol. 398, no. 1-2, pp. 91-96, 2006. https://doi.org/10.1016/j.neulet.2005.12.074
  28. T. A. Ito, J. T. Larsen, N. K. Smith, and J. T. Cacioppo, "Negative information weighs more heavily on the brain: The negativity bias in evaluative categorizations.," J. Pers. Soc. Psychol., vol. 75, no. 4, pp. 887-900, 1998. https://doi.org/10.1037/0022-3514.75.4.887
  29. S. Fruhholz, T. Fehr, and M. Herrmann, "Early and late temporo- spatial effects of contextual interference during perception of facial affect," Int. J. Psychophysiol., vol. 74, no. 1, pp. 1-13, 2009. https://doi.org/10.1016/j.ijpsycho.2009.05.010
  30. V. S. Johnston, D. R. Miller, and M. H. Burleson, "Multiple P3 s to emotional stimuli and their theoretical significance.," Psychophysiology, vol. 23, no. 6, pp. 684-693, 1986. https://doi.org/10.1111/j.1469-8986.1986.tb00694.x
  31. T. A. Ito, J. T. Cacioppo, and P. J. Lang, "Eliciting affect using the international affective picture system: trajectories through evaluative space," Personal. Soc. Psychol. Bull., vol. 24, no. 8, pp. 855-879, 1998. https://doi.org/10.1177/0146167298248006
  32. P. B. Sederberg, M. J. Kahana, M. W. Howard, E. J. Donner, and J. R. Madsen, "Theta and gamma oscillations during encoding predict subsequent recall.," J. Neurosci., vol. 23, no. 34, pp. 10809-10814, 2003. https://doi.org/10.1523/JNEUROSCI.23-34-10809.2003
  33. P. B. Sederberg, A. Schulze-Bonhage, J. R. Madsen, E. B. Bromfield, D. C. McCarthy, A. Brandt, M. S. Tully, and M. J. Kahana, "Hippocampal and neocortical gamma oscillations predict memory formation in humans," Cereb. Cortex, vol. 17, no. 5, pp. 1190-1196, 2007. https://doi.org/10.1093/cercor/bhl030
  34. D. Osipova, A. Takashima, R. Oostenveld, G. Fernandez, E. Maris, and O. Jensen, "Theta and Gamma Oscillations Predict Encoding and Retrieval of Declarative Memory," J. Neurosci., vol. 26, no. 28, pp. 7523-7531, 2006. https://doi.org/10.1523/JNEUROSCI.1948-06.2006
  35. M. Gartner and M. Bajbouj, "Encoding-related EEG oscillations during memory formation are modulated by mood state," Soc. Cogn. Affect. Neurosci., vol. 9, no. 12, pp. 1934-1941, 2013. https://doi.org/10.1093/scan/nst184
  36. D. B. Headley and D. Pare, "In sync: gamma oscillations and emotional memory," Front. Behav. Neurosci., vol. 7, no. November, pp. 1-12, 2013.
  37. J. Fell and N. Axmacher, "The role of phase synchronization in memory processes.," Nat. Rev. Neurosci., vol. 12, no. 2, pp. 105-118, 2011. https://doi.org/10.1038/nrn2979
  38. N. Axmacher, F. Mormann, G. Fernandez, C. E. Elger, and J. Fell, "Memory formation by neuronal synchronization," Brain Res. Rev., vol. 52, no. 1, pp. 170-182, 2006. https://doi.org/10.1016/j.brainresrev.2006.01.007
  39. E. Nyhus and T. Curran, "Functional role of gamma and theta oscillations in episodic memory," Neurosci. Biobehav. Rev., vol. 34, no. 7, pp. 1023-1035, 2010. https://doi.org/10.1016/j.neubiorev.2009.12.014
  40. N. Kahlbrock, M. Butz, E. S. May, and A. Schnitzler, "Sustained gamma band synchronization in early visual areas reflects the level of selective attention," Neuroimage, vol. 59, no. 1, pp. 673-81, 2012. https://doi.org/10.1016/j.neuroimage.2011.07.017
  41. V. P. Murty, M. Ritchey, R. A. Adcock, and K. S. LaBar, "FMRI studies of successful emotional memory encoding: A quantitative meta-analysis," Neuropsychologia, vol. 48, no. 12, pp. 3459-3469, 2010. https://doi.org/10.1016/j.neuropsychologia.2010.07.030
  42. K. S. LaBar and R. Cabeza, "Cognitive neuroscience of emotional memory," Nat. Rev. Neurosci., vol. 7, no. 1, pp. 54-64, 2006. https://doi.org/10.1038/nrn1825
  43. M. M. Bradley, M. Codispoti, D. Sabatinelli, and P. J. Lang, "Emotion and Motivation II: Sex Differences in Picture Processing," Emotion, vol. 1, no. 3, pp. 300-319, 2001. https://doi.org/10.1037/1528-3542.1.3.300