DOI QR코드

DOI QR Code

Optimization of Mobile Robot Predictive Controllers Under General Constraints

일반제한조건의 이동로봇예측제어기 최적화

  • Park, Jin-Hyun (Department of Mechatronics Eng., Kyeongnam National Univ. of Science and Technology) ;
  • Choi, Young-Kiu (Department of Electrical Engineering, Pusan National University)
  • Received : 2018.01.05
  • Accepted : 2018.02.08
  • Published : 2018.04.30

Abstract

The model predictive control is an effective method to optimize the current control input that predicts the current control state and the future error using the predictive model of the control system when the reference trajectory is known. Since the control input can not have a physically infinitely large value, a predictive controller design with constraints should be considered. In addition, the reference model $A_r$ and the weight matrices Q, R that determine the control performance of the predictive controller are not optimized as arbitrarily designated should be considered in the controller design. In this study, we construct a predictive controller of a mobile robot by transforming it into a quadratic programming problem with constraints, The control performance of the mobile robot can be improved by optimizing the control parameters of the predictive controller that determines the control performance of the mobile robot using genetic algorithm. Through the computer simulation, the superiority of the proposed method is confirmed by comparing with the existing method.

모델예측제어는 기준 궤적이 알려져 있을 경우 제어시스템의 예측모델을 이용하여 현재 제어상태 및 미래오차 등을 예측하여 현재 제어입력을 최적화시킬 수 있는 효과적인 방법이다. 모바일로봇의 제어입력이 물리적으로 무한히 큰 값을 가질 수 없으므로 제한조건을 갖는 예측제어기 설계가 고려되어야 한다. 또한 예측제어기의 제어성능을 결정하는 기준모델행렬 $A_r$과 가중치행렬 Q, R들이 임의로 설정됨에 따라 성능이 최적화되지 못한 부분도 설계에 고려되어야 한다. 본 연구에서는 제한조건을 갖는 quadratic programming 문제로 변형하여 모바일로봇의 예측제어기를 구성하고, 모바일 로봇의 제어성능을 결정하는 예측제어기의 제어파라미터인 기준모델행렬 $A_r$과 가중치행렬 Q, R에 대하여 유전알고리즘을 적용하여 제어파라미터들을 최적화함으로써 제어성능을 높일 수 있었다. 컴퓨터 모의실험을 통하여 본 연구에서 제안한 제어방법이 기존의 예측제어기의 추종성능보다 뛰어남을 확인하고자한다.

Keywords

References

  1. R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to Autonomous Mobile Robots, 2nd ed. Cambridge, Massachusetts, London, England: The MIT Press, 2013.
  2. R. S. Ortigoza and J. R. Sanchez, "Trajectory tracking control for a differential drive wheeled mobile robot considering the dynamics related to the actuators and power stage," IEEE Latin America Transactions, vol. 14, no. 2, pp. 657-664, Feb. 2016. https://doi.org/10.1109/TLA.2016.7437207
  3. K. M. Lynch and F. C. Park, Modern Robotics: Mechanics, Planning and Control, New York, NY: Cambridge University Press, 2017.
  4. E. F. Camacho and C. Bordons, Model Predictive Control, London, UK: Springer-Verlag, 2007.
  5. D. Gu and H. Hu, "Receding horizon tracking control of wheeled mobile robots," IEEE Transactions on Control System Technology, vol. 14, no. 4, pp. 743-749, July 2006. https://doi.org/10.1109/TCST.2006.872512
  6. S. Akiba, T. Zanma, and M. Ishida, "Optimal tracking control of two-wheeled mobile robots based on model predictive control," in Proceeding of the 11th IEEE International Workshop on Advanced Motion Control, Nagaoka, Niigata: Japan, pp. 454-459, May 2010.
  7. G. Klancar and I. skrjanc, "Tracking-error model-based predictive control for mobile robots in real time," Robotics and Autonomous Systems, vol. 55, no. 6, pp. 460-469, June 2007. https://doi.org/10.1016/j.robot.2007.01.002
  8. H. S. Son, J. H. Park and Y. K. Choi, "Predictive control for mobile robots using genetic algorithms," Journal of the Korea Institute of Information and Communication Engineering, vol. 21, no. 4, pp. 698-707, Apr. 2017. https://doi.org/10.6109/JKIICE.2017.21.4.698
  9. L. Wang, Model Predictive Control System Design and Implementation Using MATLAB, London: UK, Springer Verlag, 2009.
  10. J. H. Park and Y. K. Choi, "Control gain optimization for mobile robots using neural networks and genetic algorithms," Journal of the Korea Institute of Information and Communication Engineering, vol. 20, no. 4, pp. 698-707, Apr. 2016. https://doi.org/10.6109/jkiice.2016.20.4.698

Cited by

  1. Design of Model Predictive Controllers with Velocity and Acceleration Constraints vol.20, pp.6, 2018, https://doi.org/10.17958/ksmt.20.6.201812.809