DOI QR코드

DOI QR Code

NUMERICAL EXPERIMENTS OF THE LEGENDRE POLYNOMIAL BY GENERALIZED DIFFERENTIAL TRANSFORM METHOD FOR SOLVING THE LAPLACE EQUATION

  • Amoupour, Ebrahim (Department of Electronic Engineer Roudsar and Amlash Branch Islamic Azad University) ;
  • Toroqi, Elyas Arsanjani (Department of Applied Mathematics Faculty of Mathematics Lahijan Branch Islamic Azad University) ;
  • Najafi, Hashem Saberi (Department of Applied Mathematics Faculty of Mathematics Lahijan Branch Islamic Azad University)
  • Received : 2017.05.13
  • Accepted : 2018.03.01
  • Published : 2018.04.30

Abstract

Finding a solution for the Legendre equation is difficult. Especially if it is as a part of the Laplace equation solving in the electric fields. In this paper, first a problem of the generalized differential transform method (GDTM) is solved by the Sturm-Liouville equation, then the Legendre equation is solved by using it. To continue, the approximate solution is compared with the nth-degree Legendre polynomial for obtaining the inner and outer potential of a sphere. This approximate is more accurate than the previous solutions, and is closer to an ideal potential in the intervals.

Keywords

References

  1. A. V. Bakshi and U. V. Baksh, Electromagnetic Theory, Technical publications Pune, India, 2008.
  2. D. R. Bland, Solutions of Laplace's Equation, Routledge and Keegan Paul Ltd., London, 1961.
  3. V. S. Erturk, S. Momani, and Z. Odibat, Application of generalized differential transform method to multi-order fractional differential equations, Commun. Nonlinear Sci. Numer. Simul. 13 (2008), no. 8, 1642-1654. https://doi.org/10.1016/j.cnsns.2007.02.006
  4. E. Fehlberg, Classical Fifth-, Sixth-, Seventh-, and Eighth-Order Runge-Kutta Formulas with Step Size Control, George C. Marshal space flight center, Huntsville, Ala. 1968.
  5. E. Fehlberg, Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Warmeleitungsprobleme, Computing (Arch. Elektron. Rechnen) 6 (1970), 61-71.
  6. R. Fitzpatrick, Maxwell Equations and the Principles of Electromagnetism, Infinity Science Press LLC, Hingham, MA, 2008.
  7. W. H. Hayt and J. A. Buck, Engineering Electromagnetics, The McGraw-Hill, New York, 2012.
  8. J. D. Jackson, Classical Electrodynamics, second edition, John Wiley & Sons, Inc., New York, 1975.
  9. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.
  10. E. Kreyszig, Advanced Engineering Mathematics, Second edition, John Wiley and sons, Inc., New York, 2011.
  11. Z. Odibat and S. Momani, A generalized differential transform method for linear partial differential equations of fractional order, Appl. Math. Lett. 21 (2008), no. 2, 194-199. https://doi.org/10.1016/j.aml.2007.02.022
  12. Z. Odibat, S. Momani, and V. S. Erturk, Generalized differential transform method: application to differential equations of fractional order, Appl. Math. Comput. 197 (2008), no. 2, 467-477. https://doi.org/10.1016/j.amc.2007.07.068
  13. Z. Odibat and N. T. Shawagfeh, Generalized Taylor's formula, Appl. Math. Comput. 186 (2007), no. 1, 286-293. https://doi.org/10.1016/j.amc.2006.07.102
  14. K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.
  15. G. M. Phillips, Interpolation and Approximation by Polynomials, CMS Books in Mathematics/Ouvrages de Mathematiques de la SMC, 14, Springer-Verlag, New York, 2003.
  16. I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198, Academic Press, Inc., San Diego, CA, 1999.
  17. H. Saberi Najafi and E. Arsanjani Toroqi, Generalized differential transform method for solving liquid-film mass transfer equation of fractional order, Progr. Fract. Differ. Appl. 4 (2018), 59-64. https://doi.org/10.18576/pfda/040107
  18. H. Saberi Najafi, E. Arsanjani Toroqi, and A. Jafarzadeh Divishali, A new fractional model of single degree of freedom system, by using generalized differential transform method, Rom. J. Math. Comput. Sci. 6 (2016), no. 1, 93-105.
  19. H. Saberi Najafi, S. R. Mirshafaei, and E. Arsanjani Toroqi, An approximate solution of the Mathieu fractional equation by using the generalized differential transform method (Gdtm), Appl. Appl. Math. 7 (2012), no. 1, 374-384.
  20. H. Saberi Najafi, A. Refahi Sheikhani, and A. Ansari, Stability analysis of distributed order fractional differential equations, Abstr. Appl. Anal. 2011, Art. ID 175323, 12 pp.
  21. J. W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods, Texts in Applied Mathematics, 22, Springer-Verlag, New York, 1995.
  22. J. Vanderlinde, Classical Electromagnetic Theory, second edition, Fundamental Theories of Physics, 145, Kluwer Academic Publishers, Dordrecht, 2004.
  23. D. G. Zill, A First Course in Differential Equation with Modeling Applications, Brooks-Cole, Boston, 2013.