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DEGENERATE BERNOULLI NUMBERS AND
POLYNOMIALS ASSOCIATED WITH DEGENERATE
HERMITE POLYNOMIALS

HiBA HAROON AND WASEEM AHMAD KHAN

ABSTRACT. The article is themed to classify new (fully) degenerate
Hermite-Bernoulli polynomials with formulation in terms of p-adic
fermionic integrals on Zjp. The entire paper is designed to illustrate new
properties in association with Daehee polynomials in a consolidated and
generalized form.

1. Introduction

Fix a number p (say prime). We begin by regarding Z,, Q,,C, as the ring
of p-adic integers, the field of p-adic rational numbers and the completion of
algebraic closure of Q,, respectively. The normalized p-adic is given by | p | =

%. Let |J D(Z,) be the space of (uniformly) differentiable function on Z,,. Then

the p-adic invariant integral on Z, (also known as Volkenborn integral on Z,)
for any f € |JD(Z,) is defined as (see [11-14]):

pN—1

1) W) = | i) = Jim S f)

The following equation implies from (1):
n—1

(2) Io(fa) = Io(f) =Y f(a), (n>1),
a=0

where fn(y) = f(y +n), (see [9,11]).
Specifically, for n =1 in (2), we have

(3) Io(f1) — Io(f) = f(0).
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652 H. HAROON AND W. A. KHAN

We recall the ordinary Bernoulli numbers B,, and the ordinary Bernoulli poly-
nomials By, (z) obtained by the following Taylor series expansion (see [1-20]):

oo

(1) =3 B (< 20)
m=0
and
(5) Lot 23 B (1t ]< 2m)
et — 1 — m!’ ’

respectively.

Here, B,, is the m'" Bernoulli number. Also, for every odd k > 1, it can be
observed that B,, = 0. For each m € N, the explicit formula for the Bernoulli
polynomial is

(6) B (z) = f: (7) Bia™ .

1=0
It is noteworthy from (4) and (6 ) that

(7) ) =dm- 123 <a+$>, (d € N).

It was the efforts of Carlitz Who created the idea of degenerate Bernoulli
polynomials 3, (A, x) (see [2,3]), generating function being formulated as:

t 3
8) m 1+ At) Zﬁmm , (A #0).

We generally write 5, () for 5, (A, 0), and mention the polynomials Bm( ) as
degenerate Bernoulli numbers. For instance, 8y(\,z) =1, B1(\, z) = x—3+1),
Ba(\x) =a? —x+ £ — N

Returning to the argument of p-adic integral, from (3), we can get

(9) / Vg (y) = =Y Buwo
m=0

Here, By, (x) refers to classical Bernoulli polynomials, (see [17,18]).
Subsequently, Kim and Seo [14] proposed (fully) degenerate Bernoulli poly-

nomials which are reformulated in terms of p-adic invariant integral defined on

Z .

D+

’m

log(1 + At)*

(10) /Z(1+)\t) o) = T 0

+AM)3 = By () —
P m=0
where A # 0. Since (1 + )\tﬁ — ¢’ as \ approaches to 0, it is apparent that
(10) descends to (9).
Remember that Kim’s degenerate Bernoulli polynomials slightly vary from

the Carlitz’s degenerate Bernoulli polynomials.
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Further, (10) can also be written as

s z+y tm = tm
11 AT d — = B (x|\)—,
w3 /( : )m ) g = 3 B
where (2),, = 2(z—=1)--- (z —=m+1).
It can be found that
(12) (W)Ty> =A@+ y|\)m, (see [13])

where (z|]A)m = 2(z = A)(z2 = 2)) -+ (2 = A(m — 1))).
It is obtainable from (11) and (12) that

(13) [ @+ s )ndiiol) = Bu(a ), (> 0).

Ly

Very recently, Khan [6] intensified the notion of degenerate Bernoulli poly-
nomials B, (z|\) to degenerate Hermite-Bernoulli polynomials (of second kind)
1 Bn(z,y|\) computed as:

s P tm
L+ X)F (AL +A2)3 =) #Bm(,yN)

m=0

log(1 4 At)>
(14 Xt)> —1

which is eventually an extended generalization of Carlitz’s degenerate Bernoulli
polynomials 8, (z, A) (see [3]) and 2-variable Kampé de Fériet generalization of
Hermite polynomials Hy, (z,y) (see [1,4]). Further as A — 0in (14), g B (x, y|\)
converts to g B, (z,y) (Hermite-Bernoulli polynomials) formally given by Dat-
toli et al. [5, p. 386 (1.6)] as:

tm

t xt+yt? —
(15) (@1) e = n;)HBm(xa Z/)ﬁ-
Also, the Daehee polynomials are set forth by Kim et al. [10,15] as:

(16) log(1 +t)>
t
When z =0 in (16), D,, = D,,(0) are the Daehee numbers.

A major theme of the present article is that the study of Bernoulli numbers,
its varied generalizations and other consequential sequences can be made fea-
sible with the help of degenerate Bernoulli polynomials. A new class of (fully)
degenerate Hermite-Bernoulli polynomials are considered with formulation in
terms of p-adic fermionic integrals on Z,. The entire paper is designed to
illustrate new properties in association with Dachee numbers and polynomials.
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2. Degenerate Hermite-Bernoulli polynomials and numbers

Consider, A\,t € Cp, and | X[, < p_p%. With the viewpoint of (10) and
(14), we can easily define:

2% M £ 2\ ¥
/Z(lJr)\t) S (14 M) R dpao (1) = AR EAR)

an . -
m=0 m

For y = 0, (17) reduces to (10) and when z = y = 0 in (17), B,(\) =
1 B,,(0,0])) are known as the degenerate Bernoulli numbers.

Mark that limy_,0 g Bn (2, y|\) = g Bn(z,y), (see [5,6]).
Theorem 2.1. We have, for m >0

%] m—2k

(18) #Bm(z,y\) = Z() Zsl — 2k, )AL B) ()

m!

El(m — 2k)!
Here, S1(m,1) is the first kind stzrlzng number [6].
Proof. From (17), we observe that

o0 m

t Yy
> BN = (4} [ (1430 dpo(a)
m=0 ' Zp

t’l’ﬂ

(14 At?) Zw/ (”3&9“) dpto(1)

which on using (12), turns out to be

oo

(19) ZHBm(x,yP\)t (14 X)X Z/ (z + x1|N) duo(xl)

m=0 m=0

Now, by the definition of stirling number, we find

/ (ac+x1|/\)mdu0(x1):)\"LZSl(m,l)/ (x4 1) dpo(z1) A"
Ly =0 Ly

m
ml

(20) = Si(m, A" By ().
1=0
Thus, by (19) and (20), we obtain

o0 m
v

c- t7 . m
> mBu(eylN) = (1+ A% Z S S16m DA Bi(w)
01=0

= = /\’Cﬁ ZZS DA Bi(2) ) |
N IcO k Al n mi

m=0 [=0



> HBm(z,yM)% == (%)k 3 Si(m - 2k, DA
m=0 :

m=0 \ k=0 =0
m! tm
B, —_ | —.
XBul@) e = 2k)!) m

Coefficients of identical powers of ¢t on comparing, yields the expected result of
Theorem 2.1. (]

Remark. y = 0 in Theorem 2.1, gives a familiar looking identity of Kim et al.
[14, p. 1272 (Theorem 2.1)]:

Corollary 2.1. We have, for m >0

B (xA) =Y Si(m, DA™ ' By(x).

1=0
Theorem 2.2. We have, for m >0
(21)
[%] m—2k
— 2k m/!
B, = k(Y m B, o
Bt =30 (), 32 (") B

Proof. From (17), we have

m

> tm o\l ot
mZ:OHBmu,yM)m:(HAt )3 Z / (2 + 21N mdpao () A"
5 | erAwl tm
(1+ At%) A d —

+ z m (8 a5

v oo x x1 tm
1+>\t2AZX”m'Z< ; )/p(l)dﬂom) ,
y e z )\m*lm! tm
_ 2\ ¥ A
-<1+At>xzz<m_l)“ B

m=0 1=0
> tm - & > v (Y tQk m m tm
ZHBm(%yP\)m—Z (Z)\ (X)kﬁ Z I Bi(A)(@|A)m—1 ot
m=0 m=0 \k=0 1=0
Coefficients of identical powers of ¢t on comparing, yields the expected result of
Theorem 2.2. (]

Remark. With y = 0 in Theorem 2.2, a familiar looking identity of Kim et
al. [14, p. 1273 (Theorem 2.2)] follows:

Corollary 2.2. We have, for m >0

EREIES 3] () ET e

=0
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Theorem 2.3. We have, for m >0

(%] k
y A
= m! = VA IAIR]
(22) 1B (2,y[A) = m! 2 Dmn—ai(A,2) (,\)k (m — 2k)!k!

where TS\%)?( + At)X = D, (\, ) is the A\-Daehee polynomial [16].

Proof. From (16) and (17), we evaluate that

oo

D HBm(:U,y|)\)% - (1+At2)%/ (14 2)"5

m=0 ZP

0D e

(z1)

3 (y) A
=3 Y Dpax(Na2) (T) ——=m
m=0k=0 Ak (m — 2k)Ik!
gm oo (2] . Ny o
Z HBnL €T y|)\)7' . m) . DnL—Zk(A,.’,U) (X)k m %
m= :0

Coefficients of identical powers of ¢t on comparing, yields the expected result of
Theorem 2.3. (I

Theorem 2.4. We have, for m >0

S () S ey

m— T ok
( l * > <X>m72k7l (%)k (>\m — gfl)('ok)'

Proof. From (17), we notice that
(

1

log(1 + At)X (1 + M) (1 + At2)X

((1+/\t)%f )(/Z (1+M\)5 (1+At2>»dﬂo(;¢1)>

24 1.,
(24) (lgw+w§(zHmex >
m l m
—¢ (Z( ) A)Hll Bmz(x,yl)\)> %
0 =0

e

+

Mg

3
Il
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Again using (17) and the special case of (16), we find that
log(1 + At)X (1 + M) (1 + M2

=t <10g(1 + )‘t)) (14 X)3 (14 A%

5 (S0’ ) (), %) (S ),4%)

0o m—2k [%] m—k m
= | ( i ) (m(—);k)!k! (;)mmﬂ (%);c %

m=0 =0

=0
Therefore, from (24) and (25), the expected result of Theorem 2.4 is achieved.
t

Remark. y = 0 in Theorem 2.4, gives a familiar looking identity of Kim et
al. [13, p. 907 (Theorem 2.1)].

Corollary 2.3. We have, for m >0

i( Zn ) Efﬁ;ﬂm 1a(e) = i( lm >)\l(x|>\)m_lDl_

1=0 =0
Theorem 2.5. We have, for m >0

S ) (e Do

k=0 1=0

where Hp, (z,y; \) is the degenerate Hermite polynomial (see [6]).

Proof. From the p-adic integral (17), we evaluate
oo m oo

t tm
(27) Z HBm(x + 17y‘)‘)ﬁ - Z HBm(:%yP‘)E

m=0 m=0

_ /( 0T (1 4+ M) R dpao (1)
Z

P

/Z(1+)\t)

—[(1+ 2% 71}/2 (14 2)"5

P

- io: (%)H—l s (1—|—/\t)§(1+)\t2)%/ (1+)\t) “d
_ (l 1) Ho(l‘l)

"(1+ M) X dpg (1)

(1 + )\t2) Ad,uo(acl)

Zp

(S () (06)
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Finally, the expected result of Theorem 2.5 is achieved on comparing the coef-
ficients of L7 in (27) and (28). O

Theorem 2.6. We have, for m >0

m—+1
1
(29) HBmy1(z,y|A) = Z < ZH_ >AkaHﬂm—k+1(9f,y|>\),

k=0

where g Bm(x,y|\) is Carlitz’s degenerate Hermite-Bernoulli polynomials.

Proof. From (17), it can be conveniently shown that

/ (1+ M) 5 (14 M2) X dpag (1)
Z

P

log(1 + At) t 2 N
= 14 M)X (14 At9)>
At (1+>\t)§—1( I )

o k oo m
_ (ZDk G ) (Z Hﬁm@,wam)
k=0 ' m=0 .
(30) (= m -
()i

m=1 \k=0
[e%s) m4+1 m—+1
= N Dy g ki1 (2, y|A) | ———5
S5 Al ) Gy
W m+1 B (x9N | ¢
_, Z(ZL >>\ka1{ m—k+1(T, Y .
=\ m—+1 m!
Again from (17), we can show
1 log(1 4 At)* . SV tm
1 S tm
m=1
(31) Lo it
= n Z_:OHBmH(JU,yP\)m
_ i HBmyi1(z,y|A) t™
— m-+1 m!’

Ultimately, the expected result of Theorem 2.6 is achieved on comparing the
coefficients of L5 in (30) and (31). O

m!

Remark. On setting y = 0 in Theorem 2.6, the corresponding corollary follows:
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Corollary 2.4. We have, for m >0

m—+1
(32) ARICIVEDS ( ZML ! ) N Dy B —1 (] ).
k=0

Theorem 2.7. For d € N, we state

d—1
— at+zx A
HBm(xayp‘) =dm ! § HBm < d 7y|d>
a=0

and
[

N‘S

]
(33)

kl(m — 2k)!
k=0

Proof. From (3) and (7), one can get

(14 A)% 1 )/ (14 M)"5

Zp

(14 M) Xdpao (1)

d—
= log(1+ At) %Z 14+ M) (14 A3,
a=0

|~
Q..
,_.

At 14+ M) ¥ dpo (1) = B2 T AUT N (g )5
[ ) o) = FECEOT S
d—1 oo
1 m a+z
T d 2 d HB’”( 7Y

Therefore, from (17) we get

! a+z A
_ gm—1

a=0

On the other hand,

/Z (1+ M)

ya

<§: (%)k Akt:> /Z (m J;a”)m dpo (1) A"

k=0

(i) (i)

(1 + M) dpo (1)

A _ +
(y|)k) 2k (2| ) = d 1ZHB (a x’yl )

6
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Now, from (17), (34) and the preceding equation, the expected result of Theo-
rem 2.7 is achieved. U

Remark. y = 0 in Theorem 2.7, gives a familiar looking identity of Kim et
al. [14, p. 1275 (Theorem 2.3)].

Corollary 2.5. For d € N, we state

(@A) = dmlzB (‘HxA).

Theorem 2.8. We have, for m >0

m

(35) Hﬁm(my y|A) = Z (7;) bkAkHBm—k('r7 y|A)7

k=0

where by, is the Binomial number of second kind.

Proof. From (17), we can show that

At
log(1 + At) /Z (1+ )\t)

(14 M) R dpo (1)

(36) 0o
t z y tm
= (A + M)A+ M)F = m (2, y|A) —
gt TR A, = 3 (e
We also attain
At
—_ 1
et L 0 0 ot

At log(14 At)x . N
= . 14+ A5 (14 A?)3
log(1 + At) (1+)\t)X71( )3 )

(Zb Akt ) <§: HBm(x,y)\)::!)

m

Z Z (7;;) kA 5 By (1, y\)\)%

m=0 k=0

(37)

Now, comparing the coefficients of % in (36) and (37) gives the required the-
orem. (]

Remark. For y = 0 in Theorem 2.8, the corresponding corollary follows.

Corollary 2.6. We have, for m >0

m

Bzl =3 (C’:) A Bo_ s (2] V).

k=0
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3. Generalized degenerate Hermite-Bernoulli polynomials and
numbers

Consider a Dirichlet character x and the conductor d (d € N) associated
with it (d =1 (mod 2)). Let X be a subset of Q,, alike Z,, then

X = 1im(Z/dp"N 7);
&N
a+dpNZ, = {y € X|y = a (mod dp™)};

X* = U (a+ dpZy).
0<a<dp

If the sets are of the form a + dp™Z,, then we usually take 0 < a < dp”. One
is allowed to write

/f Yoy /f Jdpio(y), (f € UD(Z,)).

Thus, we presently define the generalized version of degenerate Hermite-
Bernoulli polynomials attached with x in the form:

/MXHW
X

_ log(1+ 20} 5=
(38) *(1+)\t>%_1;( D) x(a)(1 + A" (14 At2)

o0 tn
= Z HBn (7, Z/|>\)E

S+ M) R dpao )

n=0
For y =0, g Bp y(x,y|\) reduces to By, , (x|\) defined by Kim [14] as:
1 d-1
log(1 4+ At)> ota
[ o143 ) = PEERO 574 a5 )
(30) x 1+ M)y =1

[e's) gm
= Buala—
m=0

On adjusting z =y = 0 in (38), By (A) = g Bn,(0,0]|\) are marked as the
generalized degenerate Bernoulli numbers attached to y.
Moreover, as A — 0, then

X

(40) .
=> Bw(x)m, (see [12,19)]).
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Theorem 3.1. We have, for m >0

Tn

(7] m—k
Y A m/!
(41) H B (2, yA) = ; (X> m— 2k,x($|/\)m'
Proof. From (38), we evaluate
o0 tm
Z HBm,X(xvy‘)‘)ﬁ

m=0

:<1+M2>%/ (@) (14 M) dp (1)
X

<’§% (Z)/\)k)\kj€> (g)\m/xx(xl) <x 4:\ml)mCi/i()(:cl)ij!) )

Therefore, from (13) and (39), we deduce

S m s 2k oo .
> e = (S0 (), ) (ot )

m=0 m=0

Coefficients of % on comparison, provides the expected identity of Theorem

3.1. O
Theorem 3.2. Let d € N. We have, for m >0
d—1
L a+x A
@) B =" D@ (13 ).
a=0

Proof. From (38), we have
Z HBm X 17 y‘)‘)

xz4a

111 1+ At .
R log(1+ M) < 1+ a2)¥

= 77d2<—1>ax<a><1 +At)%

du+waf1
— at+x A tm
m=0

From (3), we have

/Xx( D+ xS

1 d—1
- mz( ) (1+At) (1+At2)§

a=0
oo

tm
= Z 1 Bm x(z, Z/P\)ﬁ

m=0

(1 + )\t )Aduo(mﬂ
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From the above two equations, we get

d—1
1B, y1N) = A" S (<1)x (@)1 B (“” y A) .

a=0 O

Remark. For y = 0 in Theorem 3.2, a familiar looking statement of Kim et
al. [14, p. 1276 (Theorem 2.4)] follows:

Corollary 3.1. Let d € N. We have, for m >0

d—1

— a+x A

B (@) = "3 x(a) By ( |)
a=0

Theorem 3.3. We have, for m >0

(43)
m—2k [%] m— 9k . y )\m—2k—lm[
B = — Z B '_
#Bm (@ 9) Z:‘) k=0( ! )()\)ml2k </\)k Z7X</\)(m—2k)!k:!
Proof. From (38), we evaluate
S BN o
HDm T, Y m
m=0
= ([ x@a 0% duoten)) 0+ 2051 2008
X
log(1 + At) 1—1—)\7& " . 2y AO™) [y (MR)E
i )\t bY — z
- A S (X (3), O ) (S (9, %

(o) (5 (.50 (£ 0.5

Coefficients of & m—! on comparison, provides the expected result of Theorem

3.3. O
Theorem 3.4. We have, for m >0

(%] m—2k m—k—l, |
(44)  gBuy (@, yl\) = kzo IZ; ( ) =26 DB (@) {5

where By, \(x) is the generalized Bernoulli polynomial defined in (40).
Proof. We write, from (38)

m

= t
Z HBm,X(xa y|>\)ﬁ

m=0

_ 2 4 2
= (14 Xt7%) /X x(x )(1+)\t) (z1)
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T+ tm
X(%)( \ 1) duo(%)m

I
N

yy (A & L
= < - <X>k k! > Z Zsl(maZ)Bl,X(ﬂj)A li.

Finally, the expected result of Theorem 3.4 is achieved on equating the
coefficients of fn, O

Remark. For y = 0 in Theorem 3.4, a familiar looking statement of Kim et
al. [14, p. 1277 (Corollary 2.5)] follows:

Corollary 3.2. We have, forn >0
By (z|\) = ZSI m, 1)\ 1 ().

4. Identities of symmetry for the degenerate Hermite-Bernoulli
polynomials

Let A,t € Cp so that | At [, < p_ﬁ. For p1,ps € N, one can define with

ease
/(1+)\t) S (1 A0 SR (1 4 A2) S g ()
ZP
1451 10g(1 )\t)% 1112 oy 11%m2?
:—Ml—i—)\t ST AP TR
(45) ( OE 1 ( ) ( )
t m
= Z B, » (P2, p2 %y) ()
m.
and
papiz [, (1+ M) dpo(z) (1+,\)’“ 1
L4+ A) 52 2dug(z)  (1+ M
(46) Iz, ( ) (2) ( )*

00 k
=S5 (-1 2 ) P2 e ).
k=0 '

Note that limy_,o Sk(n|\) = Sk(n).
Theorem 4.1. For uq, ue € N, the below symmetry identity holds well:

m 7 .
m . .
> <j),u1m]1,uzjg (i)Hij,‘jl(/wauZzz)
k=0

Jj=0
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A
X Sk <M2 - 1|’u1> Bj—k,ﬁ(.qu)'

Proof. We consider

H1H “12,& 2
I( |A) = p log(1 + At)% (I+At) 1k2($+y)(1 +A2) 2’
By p2 1+ M) —1 i Tog(1 £ 20)%
X M ((1+)\t)¥ 71)
(1+ )\t)”T2 1
or
Sy (14 M) @rtma) g () )
I(u17u2) = b : / (1 + )\t)T(E1+Illy)d‘uO(x1)’
Jo, (L 2) 52w dpo () Ja,

where T(u1, p2|A) is symmetric in pq and po.
Now, using (45) and (46) together with the symmetry of I(uq, u2|), we get

.- g "t . A\ poktk
I(pa, polN) = Z HBm7%1(//L2JJ,/L2 2) — ZSk i — 1|£ o
) k=0 :

m=0

0o m m o ‘ j
CTAEIED Sl D ol () ) ol CA PRIy

m=0 \ j=0 J

A
< (=112 ) By ) o

A similar calculation yields

oo m 7 .
m\ i1 j
HITNTIYED DY ( .)uz Ty <k>HBm_j,“>2(u1x,u12Z)

m=0 \ j=0
A tm
XSk (M - 1|M1) Bj—k,/jl(my)) m

Comparing the coefficient of % in last two equations, the required symmetry

identity is constructed. (I
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Remark. For z =0 in Theorem 4.1, the below corollary naturally follows:

Corollary 4.1. We have, for m >0

i @) ulmﬂ‘luzj’é (i) By, » (127) S (m - 1|> 2 (pmy)

=0
— m—j—1 j ‘ B A ‘
- j;) (j)m Ml ,;) <k>BmJ7qu(mm)Sk <M2 1|M1) ijk,ﬁ(:u?y).

Remark. For y = 0 in Corollary 4.1, another corollary naturally follows:

Corollary 4.2. We have, for m >0

m J .

m m—j—1 j J A
> (") Y (1) B Gz (10 <11 )
j_0(3> o \k i 12
m 7 .

=5 (M X (1) By s (- 1),
i=o \J im0\ 7 H

Remark. Further, if we take ps = 1 in Corollary 4.2, then we get the following
equality:

Corollary 4.3. We have, for 1 € N
" (m
B = Y- (") By @850~ 1),

=0 MY
Theorem 4.2. We have, for py, s € N

m p1—1
m _ _ .
8) Y (l)ml " B o (1Y) D By s <u2m+52uu22z)
H I 1

=0 i=0
m m p2—1 L
— m— 1.
= po' ™ B, s (p2y) Y By s (i Pz )
—0 l ! =0 ) U2

Proof. We consider

log(1 + At)>
I(M17M2|)\) = (Mlg()

) (14 2) 52 (14 02) =52

(1+M)F -1

LA 1 (m 1og(1+At)i> 1

A
(+At)%z—1 (14+X)%F -1 ) m

1 log(1 x "
_ L (pulogEADT) ey
o\ (14 M5 —1

p1—1 1
K2 1 1 H1H2
y (ZU“W’) (mog(Ht)> (14 22520

!1!22

(1 4+ At?)

= I+Xx)> —1
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1 log(1 4+ At)% ) . 2
(H()))&” R
1=0

1
U2 10g(1+>\t)>\ (1+>\ )/11112
1+ )% —1

p1—1 oo tl
= <Z ZHBZ A ( 2x+ Z s M2 Z) ILLl '>
5 l

i=0 [=0

tm
(Z B, » (my)ue" ) ,
m.
o] m m _ e
I 2l = > (Z(l>ﬂ1l "B,y (i)

m=0 \1=0
p1—1 m
X ; HBl /\ (mx—i—ﬂz 1% z)) ok

A similar calculation yields

[eS) m m B .
I(M17M2|)\) = Z (Z (l >:u21 1/-1’1 an—l,ﬁ(u2y)

m=0 \1=0
p2—1 m
x ZO HB A <M1$+ — 1, i1 Z) —
K2

Comparing the coefficient of fﬁ in last two equations, the required symmetry
identity is constructed. O

Remark. For z =0 in Theorem 4.2, the below corollary naturally follows:

Corollary 4.4. We have, for m >0

m p1—1
m -1, m—l w2 .
) LB )

=0
m m po—1 L

= Z ( l >H2llﬂlmle—l,)‘(u2y) Z Blvi ('U,lﬂj —+ 1Z> .
1=0 " -0 " 2

Remark. Further for y = 0 in Corollary 4.4, another corollary naturally follows:
Corollary 4.5. We have, for pi,pus € N

p1—1 po—1
llZle <M2~T+Ml>_ullzBl* <M1x+l>
L

=0 =0

Remark. Let pe = 1 in above corollary, then it reduces to the equality.
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Corollary 4.6. We have, for m >0

p1—1
-1 L.

Bia(pz) = ; Bl,ﬁ <x + mz) .
Concluding remarks. In this paper, we have approached the degenerate
Hermite-Bernoulli polynomials in the context of p-adic invariant integral on
Zy. The preliminary steps towards accomplishment of results characterized in
this paper are of common nature and are capable of extending to newly defined
families of special polynomials.
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