DOI QR코드

DOI QR Code

Noninvasive Method to Distinguish between Glucose and Sodium Chloride Solution Using Complementary Split-Ring Resonator

Complementary Split Ring Resonator(CSRR)를 이용한 포도당과 염화나트륨 수용액의 비침습적 구별

  • Jang, Chorom (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Park, Jin-Kwan (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Yun, Gi-Ho (Department of Information and Communication Engineering, Sungkyul University) ;
  • Yook, Jong-Gwan (Department of Electrical and Electronic Engineering, Yonsei University)
  • 장초롬 (연세대학교 전기전자공학부) ;
  • 박진관 (연세대학교 전기전자공학부) ;
  • 윤기호 (성결대학교 정보통신공학부) ;
  • 육종관 (연세대학교 전기전자공학부)
  • Received : 2018.02.20
  • Accepted : 2018.04.11
  • Published : 2018.04.30

Abstract

In this work, glucose solution and sodium chloride solution were distinguished noninvasively using a microwave complementary split-ring resonator (CSRR). Based on the electrical properties of the two solutions measured using a open-ended coaxial probe, a CSRR was designed and fabricated for operation at a specific frequency that facilitates differentiating the two solutions. Furthermore, a polydimethylsiloxane mold was fabricated to concentrate the solution at a region where the electric field of the resonator was strongest, and a laminating film was used to prevent contact between the solution and resonator. Experiments were performed by dropping $50{\mu}L$ of the solution in steps of 100 mg/dL up to a maximum human blood glucose level of 400 mg/dL. Our experiments confirmed that the transmission coefficients ($S_{21}$) of glucose solution and sodium chloride solution exhibit variations of -0.06 dB and 0.14 dB, respectively, per 100 mg/dL concentration change at the resonance frequency. Thus, the opposite trends in the variation of $S_{21}$ with change in the concentration of the two solutions can be used to distinguish between them.

본 논문에서는 complementary split ring resonator(CSRR)을 이용하여 마이크로파 대역에서 비침습적으로 포도당 수용액과 염화나트륨 수용액을 구별하였다. 개방형 동축 프로브로 측정한 두 수용액의 전기적 특성을 기반으로 구별이 유리한 주파수에서 동작하는 CSRR을 설계, 제작하였다. 그리고 공진기의 전기장이 강하게 형성되는 부분에 수용액을 집중시키기 위해 PDMS mold를 제작하였고, 라미네이트 필름으로 수용액과 공진기의 접촉을 방지하였다. 두 수용액의 농도는 인체 혈당 농도 범위인 400 mg/dL까지 100 mg/dL 단위로 나누었고, $50{\mu}L$의 수용액으로 실험하였다. 공진 주파수에서 포도당 수용액과 염화나트륨 수용액의 투과계수($S_{21}$)를 측정한 결과, 100 mg/dL 농도 변화 대비 각각 -0.06 dB, 0.14 dB 변하는 것을 확인하였고, 상반된 경향을 통해 두 수용액의 농도에 따른 $S_{21}$의 변화를 선택적으로 구별하였다.

Keywords

References

  1. International Diabetes Federation, "IDF figures." Available: http://www.diabetesatlas.org/key-messages.html, Accessed on: Feb. 6, 2018.
  2. International Diabetes Federation, "New IDF figures show continued increase in diabetes across the globe, reiterating the need for urgent action." Available: https://www. idf.org/news/94:new-idf-figures-show-continued-increase-in-diabetes-across-the-globe,-reiterating-the-need-for-urgent-action.html, Accessed on: Feb. 6, 2018.
  3. E. C. Green, "Design of a microwave sensor for non-in-vasive determination of blood-glucose concentration," Ph. D. dissertation, Baylor University, Waco, TX, 2005.
  4. H. Choi, S. Luzio, J. Beutler, and A. Porch, "Microwave noninvasive blood glucose monitoring sensor: Human clinical trial results," in 2017 IEEE MTT-S International Microwave Symposium(IMS), Honololu, HI, 2017, pp. 876-879.
  5. S. K. Vashist, "Non-invasive glucose monitoring techno- logy in diabetes management: A review," Analytica Chimica Acta, vol. 750, pp. 16-27, 2012. https://doi.org/10.1016/j.aca.2012.03.043
  6. K. K. Adhikari, N. Y. Kim, "Ultrahigh-sensitivity mediator-free biosensor based on a microfabricated microwave resonator for the detection of micromolar glucose concentrations," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 1, pp. 319-327, 2016. https://doi.org/10.1109/TMTT.2015.2503275
  7. H. Park, H. S. Yoon, U. Patil, R. Anoop, J. Lee, and J. Lim, et al., "Radio frequency based label-free detection of glucose," Biosensors and Bioelectronics, vol. 54, pp. 141-145, 2014. https://doi.org/10.1016/j.bios.2013.10.053
  8. N. Y. Kim, R. Dhakal, K. K. Adhikari, E. S. Kim, and C. Wang, "A reusable robust radio frequency biosensor using microwave resonator by integrated passive device technology for quantitative detection of glucose level," Biosensors and Bioelectronics, vol. 67, pp. 687-693, 2015. https://doi.org/10.1016/j.bios.2014.10.021
  9. 윤기호, "귓불에서 비침습 혈당관찰을 위한 슬롯결합 커패시터 공진기 연구," 한국전자파학회논문지, 28(4), pp. 279-285, 2017년 4월. https://doi.org/10.5515/KJKIEES.2017.28.4.279
  10. J. K. Park, T. G. Kang, B. H. Kim, H. J. Lee, H. H. Choi, and J. G Yook, "Real-time humidity sensor based on microwave resonator coupled with PEDOT: PSS conducting polymer film," Scientific Reports, vol. 8, no. 1, pp. 439, 2018. https://doi.org/10.1038/s41598-017-18979-3
  11. H. J. Lee, J. H. Lee, S. Choi, I. S. Jang, J. S. Choi, and H. I. Jung, "Asymmetric split-ring resonator-based biosensor for detection of label-free stress biomarkers," Applied Physics Letters, vol. 103, p. 053702, Jul. 2013. https://doi.org/10.1063/1.4816440
  12. S. G. Kim, H. J. Lee, J. H. Lee, H. I. Jung, and J. G. Yook, "A highly sensitive and label free biosensing platform for wireless sensor node system," Biosensors and Bioelectronics, vol. 50, pp. 362-367, Dec. 2013. https://doi.org/10.1016/j.bios.2013.06.034
  13. Y. Hong, H. J. Lee, S. G. Kim, B. H. Kim, G. H. Yun, and J. G. Yook, "A label-free biosensing platform using a PLL circuit and biotin-streptavidin binding system," IEEE Transactions on Biomedical Circuits and Systems, vol. 9, no. 3, pp. 345-352, 2015. https://doi.org/10.1109/TBCAS.2014.2349074
  14. G. Bailly, A. Harrabi, J. Rossignol, D. Stuerga, and P. Pribetich, "Microwave gas sensing with a microstrip interDigital capacitor: Detection of $NH_3$ with $TiO_2$ nanoparticles," Sensors and Actuators B: Chemical, vol. 236, pp. 554-564, Nov. 2016. https://doi.org/10.1016/j.snb.2016.06.048
  15. B. H. Kim, Y. J. Lee, H. J. Lee, Y. Hong, J. G. Yook, and M. H. Chung, et al., "A gas sensor using double split-ring resonator coated with conducting polymer at microwave frequncies," in IEEE Sensors 2014 Proceedings, Valencia, 2014, pp. 1815-1818.
  16. Y. J. An, G. H. Yun, S. W. Kim, and J. G. Yook, "Wrist pulse detection system based on changes in the near-field reflection coefficient of a resonator," IEEE Microwave and Wireless Components Letters, vol. 24, no. 10, pp. 719-721, 2014. https://doi.org/10.1109/LMWC.2014.2340584
  17. Y. J. An, B. H. Kim, G. H. Yun, S. W. Kim, S. B. Hong, and J. G. Yook, "Flexible non-constrained RF wrist pulse detection sensor based on array resonators," IEEE Transactions on Biomedical Circuits and Systems, vol. 10, no. 2, pp. 300-308, 2016. https://doi.org/10.1109/TBCAS.2015.2406776
  18. B. H. Kim, Y. Hong, Y. J. An, S. G. Kim, H. J. Lee, and S. W. Kim, et al., "A proximity coupling RF sensor for wrist pulse detection based on injection-locked PLL," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 5, pp. 1667-1676, 2016. https://doi.org/10.1109/TMTT.2016.2549531
  19. S. G. Kim, G. H. Yun, and J. G. Yook, "Compact vital signal sensor using oscillation frequency deviation," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 2, pp. 393-400, 2012. https://doi.org/10.1109/TMTT.2011.2175403
  20. Y. Hong, S. G. Kim, B. H. Kim, S. J. Ha, H. J. Lee, and G. H. Yun, et al., "Noncontact proximity vital sign sensor based on PLL for sensitivity enhancement," IEEE Transactions on Biomedical Circuits and Systems, vol. 8, no. 4, pp. 584-593, 2014. https://doi.org/10.1109/TBCAS.2013.2280913
  21. Y. An, G. Yun, and J. Yook, "Sensitivity enhanced vital sign detection based on antenna reflection coefficient variation," IEEE Transactions on Biomedical Circuits and Systems, vol. 10, no. 2, pp. 319-327, 2016. https://doi.org/10.1109/TBCAS.2014.2380435
  22. S. M. Aguilar, M. A. Al-Joumayly, M. J. Burfeindt, N. Behdad, and S. C. Hagness, "Multiband miniaturized patch antennas for a compact, shielded microwave breast imaging array," IEEE Transactions on Antennas and Propagation, vol. 62, no. 3, pp. 1221-1231, 2014. https://doi.org/10.1109/TAP.2013.2295615
  23. W. Huang, A. A. Kishk, "Compact dielectric resonator antenna for microwave breast cancer detection," IET Microwaves, Antennas & Propagation, vol. 3, no. 4, pp. 638-644, 2009. https://doi.org/10.1049/iet-map.2008.0170
  24. E. Topsakal, T. Karacolak, and E. C. Moreland, "Glucose-dependent dielectric properties of blood plasma," in 2011 XXXth URSI General Assembly and Scientific Symposium, Istanbul, 2011, pp. 1-4.
  25. C. S. Lee, C. L. Yang, "Complementary split-ring resonators for measuring dielectric constants and loss tangents," IEEE Microwave and Wireless Components Letters, vol. 24, no. 8, pp. 563-565, 2014. https://doi.org/10.1109/LMWC.2014.2318900
  26. M. S. Boybay, O. M. Ramahi, "Material characterization using complementary split-ring resonators," IEEE Transactions on Instrumentation and Measurement, vol. 61, no. 11, pp. 3039-3046, 2012. https://doi.org/10.1109/TIM.2012.2203450
  27. A. Ebrahimi, W. Withayachumnankul, S. F. Al-Sarawi, and D. Abbott, "Dual-mode behavior of the complementary electric-LC resonators loaded on transmission line: Analysis and applications," Journal of Applied Physics, vol. 116, no. 8, 2014.
  28. H. J. Lee, J. G. Yook, "Droplet sensing using small and compact high-Q planar resonator based on impedance matching technique," Review of Scientific Instruments, vol. 87, p. 094706, Sep. 2016. https://doi.org/10.1063/1.4963701