DOI QR코드

DOI QR Code

In-situ Growth Synthesis of ZIF-8 Membranes and their H2/CO2 Separation Properties

In-situ 성장법에 의한 ZIF-8 분리막 합성 및 H2/CO2 분리 특성

  • Lee, Jeong Hee (KHU-KIST Department of Converging Science and Technology, Kyung Hee University) ;
  • Yoo, Sung Jong (Fuel Cell Research Center, KIST) ;
  • Kim, Jinsoo (KHU-KIST Department of Converging Science and Technology, Kyung Hee University)
  • 이정희 (경희대학교 KHU-KIST 융합과학기술학과) ;
  • 유성종 (KIST 연료전지센터) ;
  • 김진수 (경희대학교 KHU-KIST 융합과학기술학과)
  • Received : 2018.04.25
  • Accepted : 2018.04.28
  • Published : 2018.04.30

Abstract

ZIFs (Zeolitic imdazolate frameworks) have attracted great attention as membrane materials in recent years due to their high chemical and thermal stability, high specific surface area and adjustable pore structure. In this study, ZIF-8 membranes were synthesized by in-situ growth method on two different support materials (${\alpha}$-alumina and YSZ) and their $H_2/CO_2$ gas permeation characteristics were investigated. In order to synthesize defect-free ZIF-8 layer, YSZ support required less synthesis time than ${\alpha}$-alumina support due to smaller pore size. After in-situ growth for 3 h, ZIF-8 membranes prepared on both YSZ and ${\alpha}$-alumina supports showed $H_2/CO_2$ selectivity of about 10.

ZIFs (Zeolitic imdazolate frameworks)은 높은 화학적 열적 안정성, 높은 비표면적과 조절 가능한 기공구조로 최근 분리막 소재로 큰 관심을 받고 있다. 본 연구에서는 두 가지 종류의 다공성 지지체(${\alpha}$-alumina 및 YSZ)를 사용하여 in situ 성장법으로 ZIF-8 분리막을 합성하고, $H_2/CO_2$ 기체 투과 특성을 조사하였다. 결함 없는 ZIF-8층을 합성하는데 있어, 기공이 작은 YSZ 지지체는 ${\alpha}$-alumina 지지체 보다 더 적은 시간이 요구되었다. 합성시간이 3 h인 경우, ${\alpha}$-alumina 및 YSZ 지지체위에 형성된 ZIF-8 분리막은 약 10 정도의 $H_2/CO_2$ 선택도를 보였다.

Keywords

References

  1. P. Bernardo, E. Drioli, and G. Golemme, "Membrane gas separation: A review/State of the art", Ind. Eng. Chem. Res., 48, 4638 (2009). https://doi.org/10.1021/ie8019032
  2. M. Shah, M. C. McCarthy, S. Sachdeva, A. K. Lee, and H.-K. Jeong, "Current status of metal-organic framework membranes for gas separations: promises and challenges", Ind. Eng. Chem. Res., 51, 2179 (2012). https://doi.org/10.1021/ie202038m
  3. J. H. Lee and J. Kim, "Research trends of metal-organic framework membranes: fabrication methods and gas separation applications", Membr. J., 25, 465 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.6.465
  4. V. M. A. Melgar, J. Kim, and M. R. Othman, "Zeolitic imidazolate framework membranes for gas separation: A review of synthesis methods and gas separation performance", J. Ind. Eng. Chem., 28, 1, (2015). https://doi.org/10.1016/j.jiec.2015.03.006
  5. H. Li, M. Eddaoudi, M. O'Keeffe, and O. M. Yaghi, "Design and synthesis of an exceptionally stable and highly porous metal-organic framework", Nature, 402, 276 (1999). https://doi.org/10.1038/46248
  6. J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, and J. T. Hupp, "Metal-organic framework materials as catalysts", Chem. Soc. Rev., 38, 1450 (2009). https://doi.org/10.1039/b807080f
  7. S. K. Henninger, H. A. Habib, and C. Janiak, "MOFs as adsorbents for low temperature heating and cooling applications", J. Am. Chem. Soc., 131, 2776 (2009). https://doi.org/10.1021/ja808444z
  8. H. S. Choi, S. J. Lee, Y. S. Bae, S. J. Choung, S. H. Im, and J. Kim, "Scalable continuous solvo-jet process for ZIF-8 nanoparticles," Chem. Eng. J., 266, 56 (2015). https://doi.org/10.1016/j.cej.2014.12.068
  9. V. M. A. Melgar, H. T. Kwon, and J. Kim, "Direct spraying approach for synthesis of ZIF-7 membranes by electrospray deposition", J. Membr. Sci., 459, 190 (2014). https://doi.org/10.1016/j.memsci.2014.02.020
  10. S. J. Noh and J. Kim, "Solvothermal synthesis and gas permeation properties of nanoporous HKUST-1 membranes", Membr. J., 22, 435 (2012).
  11. V. M. A. Melgar, H. Ahn, J. Kim, and M. R. Othman, "Highly selective micro-porous ZIF-8 membranes prepared by rapid electrospray deposition", J. Ind. Eng. Chem., 21, 575 (2015). https://doi.org/10.1016/j.jiec.2014.03.021
  12. S. J. Noh and J. Kim, "Solvothermal synthesis and characterization of Cu3(BTC)2 tubular membranes using surface modified supports", Korean Chem. Eng. Res., 52, 214 (2014). https://doi.org/10.9713/kcer.2014.52.2.214
  13. K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, and O. M. Yaghi, "Exceptional chemical and thermal stability of zeolitic imidazolate frameworks", Proc. Natl. Acad. Sci. U.S.A., 103, 10186 (2006). https://doi.org/10.1073/pnas.0602439103
  14. Y. S. Li, H. Bux, A. Feldhoff, G. L. Li, W. S. Yang, and J. Caro, "Controllable synthesis of metal-organic frameworks: from MOF nanorods to oriented MOF membranes", Adv. Mater., 22, 3322 (2010). https://doi.org/10.1002/adma.201000857
  15. H. Hayashi, A. P. Cote, H. Furukawa, M. O'Keeffe, and O. M. Yaghi, "Zeolite A imidazolate frameworks", Nat. Mater., 6, 501 (2007). https://doi.org/10.1038/nmat1927
  16. H. T. Kwon and H. K. Jeong, "Improving propylene/propane separation performance of zeolitic-imidazolate framework ZIF-8 membranes", Chem. Eng. Sci., 124, 20 (2015). https://doi.org/10.1016/j.ces.2014.06.021
  17. M. J. Lee, H. T. Kwon, and H. K. Jeong, "Defect-dependent stability of highly propylene-selective zeolitic-imidazolate framework ZIF-8 membranes", J. Membr. Sci., 529, 105 (2017). https://doi.org/10.1016/j.memsci.2016.12.068
  18. Y. Pan, W. Liu, Y. Zhao, C. Wang, and Z. Lai, "Improved ZIF-8 membrane: effect of activation procedure and determination of diffusivities of light hydrocarbons," J. Membr. Sci., 493, 88 (2015). https://doi.org/10.1016/j.memsci.2015.06.019
  19. H. T. Kwon and J. Kim, "Synthesis and characterization of sol-gel derived mesoporous titania/alumina membranes", Membr. J., 21, 229 (2011).
  20. V. M. A. Melgar and J. Kim, "Preparation of crack-free ZIF-7 thin films by electrospray deposition", Membr. J., 23, 278 (2013).
  21. H. Ahn, D. Kim, V. M. A. Melgar, J. Kim, M. R. Othman, H. V. P. Nguyen, J. Han, and S. P. Yoon, "YSZ-carbonate dual-phase membranes for high temperature carbon dioxide separation", J. Ind. Eng. Chem., 20, 3703 (2014). https://doi.org/10.1016/j.jiec.2013.12.069
  22. Y. Pan, B. Wang, and Z. Lai, "Synthesis of ceramic hollow fiber supported zeolitic imidazolate framework-8 (ZIF-89) membranes with high hydrogen permeability", J. Membr. Sci., 421-422, 292 (2012). https://doi.org/10.1016/j.memsci.2012.07.028
  23. M. Shah, H. T. Kwon, V. Tran, S. Sachdeva, and H. K. Jeong, "One step in situ synthesis of supported zeolitic imidazolate framework ZIF-8 membranes: role of sodium formate", Microporous Mesoporous Mat., 165, 63 (2013). https://doi.org/10.1016/j.micromeso.2012.07.046
  24. Z. Xie, J. Yang, J. Wang, J. Bai, H. Yin, B. Yuan, J. Lu, Y. Zhang, L. Zhou, and C. Duan, "Deposition of chemically modified ${\alpha}-Al_2O_3$ particles for high performance ZIF-8 membrane on a macroporous tube", Chem. Comm., 48, 5977 (2012). https://doi.org/10.1039/c2cc17607f