DOI QR코드

DOI QR Code

A Study on the Distribution and Dynamics of Relict Forest Trees and Structural Characteristics of Forest Stands in Gangwon Province, Korea

강원지역 산림유존목의 분포, 동태 및 생육임분의 구성적 특성

  • 신준환 (동양대학교 대학원 산림비지니스전공) ;
  • 이철호 (국립수목원 산림자원보존과) ;
  • 배관호 (경북대학교 생태환경시스템학부) ;
  • 조용찬 (국립수목원 산림자원보존과) ;
  • 김준수 (자연과숲연구소) ;
  • 조준희 (자연과숲연구소) ;
  • 조현제 (자연과숲연구소)
  • Received : 2018.01.19
  • Accepted : 2018.02.23
  • Published : 2018.04.30

Abstract

The purpose of this study is to provide the basic data such as distribution status, growth characteristics, and the structural characteristics of forest stands for the systematic conservation and management of relict forest trees (stem girth of 300cm or larger) established naturally in Gangwon Province, Korea. The survey showed that 434 individuals of 19 species (conifers: 228 individuals of 4 species, broad-leaved trees: 206 individuals of 15 species) were distributed in Gangwon Province, and Taxus cuspidata was the most abundant among them with 203 individuals or about 46.7 % of the total. The stem girth was average of 404cm (conifers: 373cm, broad-leaves: 421cm), and Tilia amurensis with multi-stemmed growing on Sorak mountain range had the largest stem girth at 1,113cm. The average height and the crown width of relict forest trees were 15.4m and 10.0m, respectively. Although the environments of relict forest trees showed a slight difference by species, the relative appearance frequencies of most trees were high in the environments where the altitude was higher than 1,000 m, slope degree was greater than $25^{\circ}$, the slope faced north, and microtopography was at the upper of slopes. Regarding the stand characteristics of relict forest trees per unit area ($/100m^2$), the average total coverage was 294% (max. 475%), the total average number of species was 36 species (max. 60 species), the average species diversity index (H') was 2.560 (max. 3.593), the average canopy closure was 84.8% (max. 94.6%), and the average basal area (/ha) was $52.7m^2$ (max. $116.4m^2$, relict trees $30.0m^2$, and other trees $22.7m^2$). The analysis of the dynamics of the forest stands where relict forest trees were growing showed four types of the maintenance mechanisms of relict forest trees depending on the supply pattern of succeeding trees: "Low-density but persistent type (Quercus mongolica, Abies holophylla, Tilia amurensis, and Pyrus ussuriensis)," "Long ago stopped type (Pinus densiflora)," "Recently stopped type (Abies nephrolepis, Quercus variabilis, and Betula schmidtii)," and "Periodically repeated types of supply and stop (Salix caprea and Quercus serrata).".

이 연구는 강원지역 산지에 자연적으로 성립하여 잔존하고 있는 산림유존목(가슴높이 줄기둘레 300cm이상)의 체계적 보전 및 관리를 위한 기초자료(분포실태와 생장특성 그리고 생육임분의 구성적 특성 등)를 제공하는데 그 목적이 있다. 금번 조사에서는 강원지역 산지에서 모두 19종 434개체(침엽수 4종 228개체, 활엽수 15종 206개체)의 산림유존목이 분포하고 있음을 확인하였고, 주목이 전체의 약 46.7%인 203개체로 가장 많은 것으로 나타났다. 줄기둘레는 평균 404cm(침엽수 373cm, 활엽수 421cm)이었고, 설악산 피나무 복간목이 1,113cm로 가장 크게 났다. 수고와 수관폭은 각각 평균 15.4m, 10.0m이었다. 입지특성은 수종별로 다소 차이가 있지만 해발고도는 대개 1,000m이상, 사면경사도는 $25^{\circ}$이상, 사면방위는 북향, 미세지형은 사면상부 등에서 상대적 출현빈도가 높은 경향이었다. 산림유존목 생육임분의 단위면적당($/100m^2$) 구성적 특성을 보면, 총피도는 평균 294%(최대 475%), 출현종수는 평균 36종(최대 60종), 종다양성 지수(H') 평균 2.560(최대 3.593), 그리고 수관울폐도는 평균 84.8%(최대 94.6%), 그리고 흉고단면적(/ha)은 평균 $52.7m^2$(최대 $116.4m^2$; 산림유존목 개체 $30.0m^2$, 기타 교목성 개체 $22.7m^2$)로 나타났다. 한편, 강원지역 산림유존목 개체의 동태 유형을 추정한 결과, 생육환경과 교란강도에 따라 다소 차이는 있으나 "후계수가 낮은 밀도이지만 지속적으로 공급되는 유형(신갈나무, 전나무, 피나무, 산돌배)", "후계수가 완전히 단절된 유형(소나무)", "후계수가 최근 또는 상당기간 단절된 유형(분비나무, 굴참나무, 박달나무)", 그리고 "후계수가 주기적으로 단절과 공급이 반복되는 유형(호랑버들, 졸참나무)"등 크게 4가지 유형으로 구분되었다.

Keywords

References

  1. Blicharska, M. and G. Mikusinski(2014) Incorporating social and cultural significance of large old trees in conservation policy. Conservation Biology 28: 1558-1567. https://doi.org/10.1111/cobi.12341
  2. Braun-Blanquet, J.(1964) Pflanzensoziologie: Grundzuge der Vegetationskunde(3rd ed.). Springer-Verlag, Wien, 865pp.
  3. Brown, I.F., L.A. Martinelli, W.W. Thomas, M.Z. Moreira, C.A.C. Ferreira and R.A. Victoria(1995) Uncertainty in the biomass of Amazonian forests: An example from Rondonia, Brazil. Forest Ecology and Management 75(1-3): 175-189. https://doi.org/10.1016/0378-1127(94)03512-U
  4. Camarero, J.J., E. Gutierrez, M.-J. Fortin, E. Ribbens(2005) Spatial patterns of tree recruitment in a relict population of Pinus uncinata: forest expansion through stratified diffusion. Journal of Biogeography 32 (11): 1979-1992. https://doi.org/10.1111/j.1365-2699.2005.01333.x
  5. Cecile, J., L.R. Silva and M. Anand(2013) Old trees: large and small. Science 339(6122): 904-905. https://doi.org/10.1126/science.339.6122.904-a
  6. Chao, K.-J., O.L. Phillips, A. Monteagudo, A. Torres-Lezama and R.V. Martinez(2009) How do trees die? Mode of death in northern Amazonia. Journal of Vegetation Science 20: 260-268. https://doi.org/10.1111/j.1654-1103.2009.05755.x
  7. Cho, H.J., C.H. Lee, J.H. Shin, K.H. Bae, Y.C. Cho and J.S. Kim(2016) Diversity, Spatial Distribution and Ecological Characteristics of Relict Forest Trees in South Korea. Journal of Korean Forest Society 105(4): 401-413. (in Korean with English abstract) https://doi.org/10.14578/jkfs.2016.105.4.401
  8. Clark, D.B. and D.A. Clark(1996) Abundance, growth and mortality of very large trees in Neotropical lowland rain forest. Forest Ecology and Management 80: 235-244. https://doi.org/10.1016/0378-1127(95)03607-5
  9. Douglas, M.(2012) Big, old trees in decline wolrdwide. http://www.livescience.com/25310-big-trees-in-decline.html(2016. 8. 15.).
  10. Fedrigoa, M., S. Kasela, L.T. Bennettb, S.H. Roxburghc and C.R. Nitschkea(2014) Carbon stocks in temperate forests of southeastern Australia reflect large tree distribution and edaphic conditions. Forest Ecology and Management 334(15): 129-143. https://doi.org/10.1016/j.foreco.2014.08.025
  11. Franklin, J.F.(2012) The importance of Big, Old Trees. https://www.americanforests.org/blog/the-importance-of-big-oldtrees/(2017.10.15.).
  12. Harmon, M.E., K. Cromack and B.G. Smith(1987) Coarse woody debris in mixedconifer forests, Sequoia National Park, California. Canadian Journal of Forest Research 17: 1265-1272. https://doi.org/10.1139/x87-196
  13. Harmon, M.E., C.W. Woodall, B. Fasth and J. Sexton(2008) Woody detritus density and density reduction factors for tree species in the United States: a synthesis. General Technical Report NRS-29, Northern Research Station, USDA Forest Service. 84pp.
  14. Harvey, C.A. and W.A. Haber(1988) Remnant trees and the conservation of biodiversity in Costa Rican pastures. Agroforestry Systems 44(1): 37-68. https://doi.org/10.1023/A:1006122211692
  15. Keeton, W.S. and J.F. Franklin(2005) Do remnant old-growth trees accelerate rates of succession in mature Douglas-fir forests? Ecological Monographs 75: 103-118. https://doi.org/10.1890/03-0626
  16. Kim, J.S. and T.Y. Kim(2011) Woody Plants of Korean Peninsula. Dolbegae, Paju. (In Korean)
  17. Korea Forest Service(2017) Korean Plant Names Index. http://www.nature.go.kr/kpni/SubIndex.do (2017.12.1.). (In Korean)
  18. Korea Forest Service(2016) Conservation and management technique for forest relict trees(I). Research and Development Project of forestry technology. 1 st Research Report. 55pp. (in Korean with English abstract)
  19. Larson, A.J. and J.F. Franklin(2010) The tree mortality regime in temperate old-growth coniferous forests: the role of physical damage. Canadian Journal of Forest Research 40: 2091-2103. https://doi.org/10.1139/X10-149
  20. Lee, T.B.(2003) Coloured flora of Korea, Hyangmunsa press, Seoul, 910pp. (in Korean)
  21. Laurance, W.(2012) How the mighty are fallen. New Scientist 213: 39-41.
  22. Lindenmayer, D.B., W. Blanchard, L. McBurney, D. Blair, S. Banks, G.E. Likens, J.F. Franklin, W.F. Laurance, J.A. Stein and P. Gibbons(2012a) Interacting factors driving a major loss of large trees with cavities in a forest ecosystem. PLoS One 7(10): e41864. https://doi.org/10.1371/journal.pone.0041864
  23. Lindenmayer, D.B., W.F. Laurance and J.F. Franklin(2012b) Global decline in large old trees. Science 338: 1305-1306. https://doi.org/10.1126/science.1231070
  24. Lindenmayer, D.B., W. Laurance, W.F. Franklin, G.E. Likens, S.C. Banks, W. Blanchard, P. Gibbons, K. Ikin, D. Blair, L. McBurney, A.D. Manning and J.A.R. Stein(2014b) New policies for old trees: averting a global crisis in a keystone ecological structure. Conservation Letters 7: 61-69. https://doi.org/10.1111/conl.12013
  25. Lindenmayer, D.B.(2016) The importance of managing and conserving large old trees: a case study from Victorian Mountain Ash Forests. The Royal Society of Victoria 128: 64-70. 10.1071/RS16006.
  26. Lindenmayer, D.B. and W.F. Laurance(2016) The ecology, distribution, conservation and management of large old trees. Biological Reviews 92(3): 1434-1458. doi: 10.1111/brv.12290.
  27. Lutz, J.A., A.J. Larson, M.E. Swanson and J.A. Freund(2012) Ecological Importance of Large-Diameter Trees in a Temperate Mixed-Conifer Forest. PLoS ONE 7(5): e36131. https://doi.org/10.1371/journal.pone.0036131
  28. Martin, T.A., K.J. Brown, J. Kucera, F.C. Meinzer, D.G. Sprugel and T.M. Hinckley(2001) Control of transpiration in a 220-year old Abies amabilis forest. Forest Ecology and Management 152: 211-224. https://doi.org/10.1016/S0378-1127(00)00604-6
  29. Maharramova, E.(2015) Genetic diversity and population structure of the relict forest trees Zelkova carpinifolia (Ulmaceae) and Pterocarya fraxinifolia (Juglandaceae) in the South Caucasus. Freie Universitat Berlin. Doctoral thesis, 123pp.
  30. Mattias, E., E. Anna-Maria and V. Marc-Andre(2016) The importance of large-tree retention for the persistence of old-growth epiphytic bryophyte Neckera pennata in selection harvest systems. Forest Ecology and Management 372: 143-148. https://doi.org/10.1016/j.foreco.2016.04.013
  31. Meyer, M.D., D.A. Kelt and M.P. North(2005) Nest trees of northern flying squirrels in the Sierra Nevada. Journal of Mammalogy 86: 275-280. https://doi.org/10.1644/BEH-110.1
  32. Miehe, G., S. Miehe, M. Will, L. Opgenoorth, L. Duo, T. Dorgeh and J. Liu(2008) An inventory of forest relicts in the pastures of Southern Tibet (Xizang A.R., China). Plant Ecology 194(2): 157-177. https://doi.org/10.1007/s11258-007-9282-0
  33. Petit, R.J., A. Hampe and R. Cheddadi(2005) Climate change and tree phylogeography in the Mediterranean. Taxonomy 54: 877-885. https://doi.org/10.2307/25065474
  34. Phillips, N.G., T.N. Buckley and D.T. Tissue(2008) Capacity of old trees to respond to environmental change. Journal of Integrative Plant Biology 50: 1355-1364. https://doi.org/10.1111/j.1744-7909.2008.00746.x
  35. Qgis Development Team(2015) Qgis ver. 2.18.4 program. http://qgis.org/ko/site/(2017.1.7.)
  36. Rambo, T. and M. North(2009) Canopy microclimate response to pattern and density of thinning in a Sierra Nevada forest. Forest Ecology and Management 257: 435-442. https://doi.org/10.1016/j.foreco.2008.09.029
  37. Remm, J. and A. Lohmus(2011) Tree cavities in forests - the broad distribution pattern of a keystone structure for biodiversity. Forest Ecology and Management 262: 579-585. https://doi.org/10.1016/j.foreco.2011.04.028
  38. Sillett, S.C. and R. Van Pelt(2007) Trunk reiteration promotes epiphytes and water storage in an old-growth redwood forest canopy. Ecological Monographs 77: 335-359. https://doi.org/10.1890/06-0994.1
  39. Stalgoll, K., D.B. Lindenmayer, E. Knight, J. Fischer and A.D. Manning(2012) Large trees are keystone structures in urban parks. Conservation Letters 5:115-122. https://doi.org/10.1111/j.1755-263X.2011.00216.x
  40. Stephenson, N.L., A.J. Das, R. Condit, S.E. Russo, P.J. Baker, N.G. Beckman, D.A. Coomes, E.R. Lines, W.K. Morris, N. Ruger, E. Alvarez, C. Blundo, S. Bunyavejchewin, G. Chuyong, S.J. Davies, A. Duque, C.N. Ewango, O. Flores, J.F. Franklin, H.R. Grau, Z. Hao, M.E. Harmon, S.P. Hubbell, D. Kenfack, Y. Lin, J.R. Makana, A. Malizia, L.R. Malizia, R.J. Pabst, N. Pongpattananurak, S.H. Su, I-F. Sun, S. Tan, D. Thomas, P.J. van Mantgem, X. Wang, S.K. Wiser and M.A. Zavala(2014) Rate of tree carbon accumulation increases continuously with tree size. Nature 507: 90-93. https://doi.org/10.1038/nature12914
  41. van Wagtendonk, J.W. and P.E. Moore(2010) Fuel deposition rates of montane and subalpine conifers in the central Sierra Nevada, California, USA. Forest Ecology and Management 259: 2122-2132. https://doi.org/10.1016/j.foreco.2010.02.024