DOI QR코드

DOI QR Code

Atorvastatin: In-Vivo Synergy with Metronidazole as Anti-Blastocystis Therapy

  • Basyoni, Maha M.A. (Medical Parasitology Department, Faculty of Medicine, Cairo University) ;
  • Fouad, Shawky A. (Internal Medicine Department, Faculty of Medicine, Cairo University) ;
  • Amer, Marwa F. (Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University) ;
  • Amer, Ahmed Fathy (Child Health Department, National Research Center) ;
  • Ismail, Dalia Ibrahim (Histology Department, Faculty of Medicine, Cairo University)
  • Received : 2017.11.28
  • Accepted : 2018.04.08
  • Published : 2018.04.30

Abstract

Blastocystis is an enteric Straminopile in tropical, subtropical and developing countries. Metronidazole has been a chemotheraputic for blastocystosis. Failures in its regimens were reported and necessitate new studies searching for alternative therapeutic agents. Aim of current study is to investigate potential effects of Atorvastatin (AVA) compared to the conventional chemotherapeutic MTZ in experimentally Blastocystis-infected mice. Anti-Blastocystis efficacy of AVA was evaluated parasitologically, histopathologically and by transmission electron microscopy using MTZ (10 mg/kg) as a control. Therapeutic efficacy of AVA were apparently dose-dependent. Regimens of AVA (20 and 40 mg/kg) proved effective against Blastocystis infections with highreduction in Blastocystis shedding (93.4-97.9%) compared to MTZ (79.3%). The highest reductions (98.1% and 99.4%)were recorded in groups of combination treatments AVA 20-40 mg/kg and MTZ 10 mg/kg. Blastocystis was nearly eradicated by the 20th day post infection. Genotype analysis revealed that genotype I was most susceptible, genotype III was less. Histopathologic and ultrastructural studies revealed apoptotic changes in Blastocystis and significant improvement of intestinal histopathological changes more remarkable in combinational therapy groups. Thus, the present study offers AVA as a potential candidate for Blastocystis therapy combined with MTZ.

Keywords

References

  1. Tan KS. New insights on classification, identification, and clinical relevance of Blastocystis spp. Clin Microbiol Rev 2008; 21: 639-665. https://doi.org/10.1128/CMR.00022-08
  2. Alfellani MA, Stensvold CR, Vidal-Lapiedra A, Onuoha ES, Fagbenro-Beyioku AF, Clark CG. Variable geographic distribution of Blastocystis subtypes and its potential implications. Acta Trop 2013; 126: 11-18. https://doi.org/10.1016/j.actatropica.2012.12.011
  3. Stark D, van Hal S, Marriott D, Ellis J, Harkness J. Irritable bowel syndrome: A review on the role of intestinal protozoa and the importance of their detection and diagnosis. Int J Parasitol 2007; 37: 11-20. https://doi.org/10.1016/j.ijpara.2006.09.009
  4. Gallagher PG, Venglarcik JS 3rd. Blastocystis hominis enteritis. Pediatr Infect Dis 1985; 4: 556-557. https://doi.org/10.1097/00006454-198509000-00026
  5. Tsang TK, Levin BS, Morse SR. Terminal ileitis associated with Blastocystis hominis infection. Am J Gastroenterol 1989; 84: 798-799.
  6. Mirza H, Teo JD, Upcroft J, Tan KS. A rapid, high-throughput viability assay for Blastocystis spp. reveals metronidazole resistance and extensive subtype dependent variations in drug susceptibilities. Antimicrob Agents Chemother 2011; 55: 637-648. https://doi.org/10.1128/AAC.00900-10
  7. Stensvold CR, Smith HV, Nagel R, Olsen KE, Traub RJ. Eradication of Blastocystis carriage with antimicrobials: reality or delusion? J Clin Gastroenterol 2010; 44: 85-90. https://doi.org/10.1097/MCG.0b013e3181bb86ba
  8. Tan KS, Mirza H, Teo JD, Wu B, Macary PA. Current views on the clinical relevance of Blastocystis spp. Curr Infect Dis Rep 2010; 12: 28-35. https://doi.org/10.1007/s11908-009-0073-8
  9. Johnson PJ. Metronidazole and drug resistance. Parasitology Today 1993; 9: 183-186. https://doi.org/10.1016/0169-4758(93)90143-4
  10. Lemee V, Zaharia I, Nevez G, Rabodonirina M, Brasseur P, Ballet JJ, Favennec L. Metronidazole, albendazole susceptibility of 11 clinical isolates of Giardia duodenalis from France. J Antimicrob Chemother 2000; 46: 819-821. https://doi.org/10.1093/jac/46.5.819
  11. Wang CY, Liu PY, Liao JK. Pleiotropic effects of statin therapy: molecular mechanisms and clinical results. Trends Mol Med 2008; 14: 37-44. https://doi.org/10.1016/j.molmed.2007.11.004
  12. Zhou Q, Liao JK. Statins and cardiovascular diseases: from cholesterol lowering to pleiotropy. Curr Pharm Des 2009; 15: 467-478. https://doi.org/10.2174/138161209787315684
  13. Rodriguez C, Alcudia JF, Martinez-Gonzalez J, Guadall A, Raposo B, Sanchez-Gomez S, Badimon L. Statins normalize vascular lysyl oxidase down regulation induced by proatherogenic risk factors. Cardiovasc Res 2009; 83: 595-603. https://doi.org/10.1093/cvr/cvp136
  14. Mirza H, Wu Z, Teo JD, Tan KS. Statin pleiotropy prevents rho kinase-mediated intestinal epithelial barrier compromise induced by Blastocystis cysteine proteases. Cell Microbiol 2012; 14: 1474-1484. https://doi.org/10.1111/j.1462-5822.2012.01814.x
  15. Dagci H, Ustun S, Taner MS, Ersoz G, Karacasu F, Budak S. Protozoon infections and intestinal permeability. Acta Trop 2002; 81: 1-5. https://doi.org/10.1016/S0001-706X(01)00191-7
  16. Puthia MK, Sio SW Lu J, Tan KS. Blastocystis ratti induces contactindependent apoptosis, F-actin rearrangement, and barrier function disruption in IEC-6 cells. Infect Immun 2006; 74: 4114-4123. https://doi.org/10.1128/IAI.00328-06
  17. Jones WR. The experimental infection of rats with Entamoeba histolytica with a method for evaluating the anti-amoebic properties of new compounds. Ann Trop Med Parasitol 1946; 40: 130-140. https://doi.org/10.1080/00034983.1946.11685270
  18. Eida OM, Hussein EM, Eida AM, El-Moamly AA, Salem AM. Evaluation of the nitric oxide activity against B.hominis in vitro and in vivo. J Egypt Soc Parasitol 2008; 38: 521-536.
  19. Parkar U, Traub RJ, Kumar S, Mungthin M, Vitali S, Leelayoova S, Morris K, Thompson RC. Direct characterization of Blastocystis from feces by PCR and evidence of zoonotic potential. Parasitology 2007; 134: 359-367. https://doi.org/10.1017/S0031182006001582
  20. Yang LQ, Singh M, Yap EH, Ng GC, Xu HX, Sim KY. In vitro response of Blastocystis hominis against traditional Chinese medicine. J Ethnopharmacol 1996; 55: 35-42. https://doi.org/10.1016/S0378-8741(96)01471-7
  21. Shlim DR, Hoge CW, Rajah R, Rabold JG, Echeverria P. Is Blastocystis hominis a cause of diarrhea in travelers? A prospective controlled study in Nepal. Clin Infect Dis 1995; 21: 97-101. https://doi.org/10.1093/clinids/21.1.97
  22. Yoshikawa H, Abe N, Wu Z. PCR-based identification of zoonotic isolates of Blastocystis from mammals and birds. Microbiology 2004; 150: 1147-1151. https://doi.org/10.1099/mic.0.26899-0
  23. Haresh K, Suresh K, Khairul Anuar A, Saminathan S. Isolate resistance of Blastocystis hominis to metronidazole. Trop Med Int Health 1999; 4: 244-277.
  24. Becker S, Hoffman P, Houpt ER. Efficacy of antiamebic drugs in a mouse model. Am J Trop Med Hyg 2011; 84: 581-586. https://doi.org/10.4269/ajtmh.2011.10-0580
  25. Penna-Coutinho J, Cortopassi WA, Oliveira AA, Franca TC, Krettli AU. Antimalarial activity of potential inhibitors of Plasmodium falciparum lactate dehydrogenase enzyme selected by docking studies. PLoS One 2011; 6: e21237. https://doi.org/10.1371/journal.pone.0021237
  26. Moe KT, Singh M, Howe J, Ho LC, Tan SW, Chen XQ, Ng GC, Yap EH. Experimental Blastocystis hominis infection in laboratory mice. Parasitol Res 1997; 83: 319-325. https://doi.org/10.1007/s004360050256
  27. Coppens I, Bastin P, Levade T, Courtoy PJ. Activity, pharmacological inhibition and biological regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in Trypanosoma brucei. Mol Biochem Parasitol 1995; 69: 29-40. https://doi.org/10.1016/0166-6851(94)00192-P
  28. Soliman MF, Ibrahim MM. Antischistosomal action of atorvastatin alone and concurrently with medroxyprogesterone acetate on Schistosoma haematobium harboured in hamster: surface ultrastructure and parasitological study. Acta Trop 2005; 93: 1-9. https://doi.org/10.1016/j.actatropica.2004.08.006
  29. Cortez E, Stumbo AC, Oliveira M, Barbosa HS, Carvalho L. Statins inhibit Toxoplasma gondii multiplication in macrophages in vitro. Int J Antimicrob Agents 2009; 33: 185-186. https://doi.org/10.1016/j.ijantimicag.2008.07.026
  30. Nishikawa Y, Quittnat F, Stedman TT, Voelker DR, Choi JY, Zahn M, Yang M, Pypaert M, Joiner KA, Coppens I. Host cell lipids control cholesteryl ester synthesis and storage in intracellular Toxoplasma. Cell Microbiol 2005; 7: 849-867. https://doi.org/10.1111/j.1462-5822.2005.00518.x
  31. Li ZH, Ramakrishnan S, Striepen B, Moren SN. Toxoplasma gondii relies on Both Host and Parasite Isoprenoids and Can Be Rendered Sensitive to Atorvastatin. PLoS Pathog 2013; 9: e1003665. https://doi.org/10.1371/journal.ppat.1003665
  32. Parquet V, Briolant S, Torrentino-Madamet M, Henry M, Almeras L, Amalvict R, Baret E, Fusai T, Rogier C, Pradines B. Atorvastatin is a promising partner for antimalarial drugs in treatment of Plasmodium falciparum malaria. Antimicrob Agents Chemother 2009; 53: 2248-2252. https://doi.org/10.1128/AAC.01462-08
  33. Taoufiq Z, Gay F, Balvanyos J, Ciceron L, Tefit M, Lechat P, Mazier D. Rho kinase inhibition in severe malaria: thwarting parasite induced collateral damage to endothelia. J Infect Dis 2008; 197: 1062-1073. https://doi.org/10.1086/528988
  34. Bessoff K, Sateriale A, Lee KK, Huston CD. Drug repurposing screen reveals FDA-approved inhibitors of human HMG-CoA reductase and isoprenoid synthesis that block C. parvum growth. Antimicrob Agents Chemother 2013; 57: 1804-1814. https://doi.org/10.1128/AAC.02460-12
  35. Dinesh N, Pallerla DS, Kaur PK, Kishore Babu N, Singh S. Exploring Leishmania donovani 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) as a potential drug target by biochemical, biophysical and inhibition studies. Microb Pathog 2014; 66: 14-23. https://doi.org/10.1016/j.micpath.2013.11.001
  36. Kumar GA, Roy S, Jafurulla M, Mandal C, Chattopadhyay A. Statin-induced chronic cholesterol depletion inhibits Leishmania donovani infection: Relevance of optimum host membrane cholesterol. Biochim Biophys Acta 2016; 1858: 2088-2096. https://doi.org/10.1016/j.bbamem.2016.06.010
  37. Pradines B, Torrentino-Madamet M, Fontaine A, Henry M, Baret E, Mosnier J, Briolant S, Fusai T, Rogier C. Atorvastatin is 10-fold more active in vitro than other statins against Plasmodium falciparum. Antimicrob Agents Chemother 2007; 51: 2654-2655. https://doi.org/10.1128/AAC.01330-06
  38. Bienvenu AL, Picot S. Statins alone are ineffective in cerebral malaria but potentiate artesunate. Antimicrob Agents Chemother 2008; 52: 4203-4204. https://doi.org/10.1128/AAC.00513-08
  39. Kobbe R, Schreiber N, May J, Jacobs T. Simvastatin treatment shows no effect on the incidence of cerebral malaria or parasitemia during experimental malaria. Antimicrob Agents Chemother 2008; 52: 1583-1584. https://doi.org/10.1128/AAC.01428-07
  40. Savini H, Souraud JB, Briolant S, Baret E, Amalvict R, Rogier C, Pradines B. Atorvastatin as a potential antimalarial drug: in vitro synergy in combinational therapy with dihydroartemisinin. Antimicrob Agents Chemother 2010; 54: 966-967. https://doi.org/10.1128/AAC.01006-09

Cited by

  1. Prenylquinones in Human Parasitic Protozoa: Biosynthesis, Physiological Functions, and Potential as Chemotherapeutic Targets vol.24, pp.20, 2018, https://doi.org/10.3390/molecules24203721
  2. Joining forces: Leveraging novel combination therapies to combat infections with eukaryotic pathogens vol.16, pp.12, 2020, https://doi.org/10.1371/journal.ppat.1009081