DOI QR코드

DOI QR Code

Suggesting Strategies of Integrating Science Based on Worldview: Climate Change

세계관을 바탕으로 통합과학 교육전략 제안: 기후변화를 중심으로

  • Received : 2018.03.22
  • Accepted : 2018.04.23
  • Published : 2018.04.30

Abstract

The purpose of this study is to suggest some strategies for integrated science. It also suggests educational strategies through worldview. The directions of most educational policy are based on the deficit model. It is assumed that learners are always lacking in knowledge, and as a result they do not understand properly. However, it is difficult for the public and students to change their attitudes because they do not feel much lacking. For example, the world view of climate change coexists with an optimistic mechanical worldview and an organic and entropy worldview. This study is characterized by the process of expanding awareness of living and fulfillment of knowledge rather than the existing deprivation model. Unconnected knowledge has problems in diversity. It is neither sustainable nor flexible. It is not about eliminating interdisciplinarity but about lowering it. We go into another area with your deep expertise, but we must have a purpose. As a result, not only problem solving but also dynamic feedback of mutual feedback between other domains increases the quality and quantity of knowledge.

본 연구의 목적은 세계관을 바탕으로 한 기후 변화내용에 대한 통합과학 교육전략을 제안하는데 있다. 어떤 개념이나 현상을 이해한다고 반드시 깨닫는 것이 아니다. 현재까지 대부분의 학교 교육의 정책 방향은 학생들의 결핍 모델에 기초하고 있다. 결핍 모델이란, 학습자는 늘 지식과 경험이 부족하여, 학습 내용을 제대로 이해하지 못한다고 단정하는 생각에 기초하고 있다. 그리고 학생들은 이슈가 되는 내용에 대해 깊이 있게 깨닫지 못하기 때문에 그에 대한 태도나 행동 변화가 어렵다. 예를 들면, 기후 변화의 세계관은 낙관적인 기계적인 세계관과 유기체적이고 엔트로피적 세계관이 공존한다. 이 연구는 기존의 결핍 모형의 관점에서 나아가 앎을 살아있는 충족성과 정합성을 확장하는 과정으로 의미화 하고자 한다. 서로 연결이 되지 않은 지식은 다양성을 갖기 어렵고, 지속가능하지도 않고 유연성도 없다. 따라서 이 연구의 주요 아이디어는 학문 간의 담을 없애는 것이 아니라, 서로 연결이 가능하도록 담을 낮추자는 것에 있다. 학습을 할 때, 어느 한 학문 영역에 대해 깊은 전문성을 가지고 다른 학문 영역으로 들어가지만, 연결을 위해서는 반드시 특정 목적을 가지고 있어야한다. 그러한 통합의 과정에서 문제 해결의 실마리를 의미 있게 찾을 수 있을 뿐만 아니라 동적으로 다른 영역간의 상호 피드백에 의하여 지식의 질과 양이 늘어나는 효과를 가져올 수 있다.

Keywords

References

  1. 방담이, 박은미, 윤회정, 김지영, 이윤하, 박지은, 송주연, 동효관, 심병주, 임희준, 이현숙 (2013). Big idea를 중심으로 한 통합형 과학 교육과정 틀 설계. 한국과학교육학회지, 33(5), 1041-1054. https://doi.org/10.14697/jkase.2013.33.5.1041
  2. 이남인 (2015). 통섭을 넘어서: 학제적 연구와 교육의 활성화를 위한 철학적 성찰. 서울: 서울대학교출판문화원.
  3. 이선경, 황세영 (2012). 과학교육에서 융복합교육에 대한 교사의 인식과 경험 탐색: 과학교사 포커스 그룹 논의를 중심으로. 한국과학교육학회지, 32(5), 974-990. https://doi.org/10.14697/jkase.2012.32.5.974
  4. 이영덕 (1983). 통합 교육 과정의 개념. 한국 교육 개발원(편): 통합 교육 과정의 이론과 실제. 서울: 교육과학사.
  5. 차윤경, 김선아, 김시정, 문종은, 송륜진, 박영석, 박주호, 안성호, 이삼형, 이선경, 이은연, 주미경, 함승환, 황세경, (2014). 융복합교육의 이론과 실제, 서울: 학지사.
  6. Ashby, W. R. (1946). Dynamics of the cerebral cortex: the behavioural properties of systems in equilibrium. The American journal of psychology, 59, 682-686. https://doi.org/10.2307/1416833
  7. Ashby, W. R. (1947). The nervous system as physical machine: With special reference to the origin of adaptive behavior. Mind, 56, 44-59.
  8. Ashby, W. R. (1956). Automata Studies. Annals of Mathematics Studies, 34, Princeton: Princeton University Press.
  9. Akkerman, S., van den Bossche, P., Admirral, W., Gijselaers, W., Sergers, M., Simons, R.-J., & Kirschner, P. (2007). Reconsidering group cognition: from conceptual confusion to a boundary area between cognitive and socio-cultural perspective. Educational Research Review, 2(1), 39-63. https://doi.org/10.1016/j.edurev.2007.02.001
  10. Baek, H., Schwarz, C., Chen, J., Hokayem, H., & Zhan, L. (2011). Engaging elementary students in scientific modeling: The MoDeLS 5th grade approach and findings. in M. S. Khine & I. M. Saleh (Eds.), Models and modeling: Cognitive tools for scientific inquiry, NY: Springer.
  11. Bateson, G. (1972). The logical categories of learning and communication. Steps to an Ecology of Mind,
  12. Beeth, M. (1966). Dynamic aspects of conceptual change instruction. Unpublished dissertation. Wisconsin: University of Wisconsin - Madison.
  13. Beeth, M. (1993). Classroom Environment and Conceptual Change Instruction.
  14. Bruner, J. S. (1960). The process of education: a searching discussion of school education opening new paths to learning and teaching, Vintage Books.
  15. Cantrell, D.C., & Barron, P.A. (1996). Integrating Environmental Education and Science: Using and Developing Learning Episodes. Environmental Education Council of Ohio, 3-10.
  16. Cheng, M.-F., & Brown, D.E. (2015). The Role of Scientific Modeling Criteria in Advancing Students' Explanatory Ideas of Magnetism. Journal of Research in Science Teaching, 52, 1053-1081. https://doi.org/10.1002/tea.21234
  17. Cobern, W. W. (1993). College students' conceptualizations of nature: An interpretiveworld viewanalysis. Journal of Research in Science Teaching, 30, 935-952. https://doi.org/10.1002/tea.3660300810
  18. Daniel, S. & Dayan, T. (1991). The guild concept and the structure of ecological communities. Annual review of ecology and systematics, 22, 115-143. https://doi.org/10.1146/annurev.es.22.110191.000555
  19. David, T., Lehman, C, L. & Thomson, K, T. (1997). Plant diversity and ecosystem productivity: theoretical considerations. Proceedings of the national academy of sciences, 94, 1857-1861. https://doi.org/10.1073/pnas.94.5.1857
  20. Davis, B., Sumara, D., & Luce-Kapler, R. (2008). Engaging minds: Changing teaching in complex times (2nd ed.). New York, NY : Routledge. 마음과 학습: 교육학의 복잡계적 접근, 한숭희, 양은아 옮김, 서울 : 교육과학사.
  21. Davis, B. (2004). Inventions of Teaching: A Genealogy. New York, NY : Routledge. 구성주의를 넘어선 복잡성교육과 생태주의 교육의 계보학, 심일섭 옮김, 서울 : 씨아이알.
  22. Demastes, S. S., Good, R., & Peebles, P. (1995). Students' conceptual ecologies and the process of conceptual change in evolution. Science Education, 79, 637-666. https://doi.org/10.1002/sce.3730790605
  23. Deniz, H., Donnelly, L. A., & Yilmaz, I. (2008). Exploring the factors related to acceptance of evolutionary theory among Turkish preservice biology teachers: Toward a more informative conceptual ecology for biological evolution. Journal of Research in Science Teaching, 45, 420-443. https://doi.org/10.1002/tea.20223
  24. Falk, J, H., and Dierking, L, D. (2010). The 95 Percent Solution School is not where most Americans learn most of their science. American Scientist, 98, 486-493. https://doi.org/10.1511/2010.87.486
  25. Falk, J, H., and Needham, M, D. (2013). Factors contributing to adult knowledge of science and technology. Journal of Research in Science Teaching, 50, 431-452. https://doi.org/10.1002/tea.21080
  26. Falk, John H., Dierking, Lynn D., Osborne, J., Wenger, M., Dawson, E., & Wong B. (2015). "Analyzing science education in the united kingdom: taking a system-wide approach". Science education, 99, 145-173. https://doi.org/10.1002/sce.21140
  27. Fogarty, R. (1991). Ten ways to integrated curriculum. Educational Leadership, 49, 61-65.
  28. Gell-Mann, M. (1994). Complex adaptive systems. Complexity: metaphors, models and reality. Perseus Books, 17-28.
  29. Gibbones, M., Limoges, C., Norway, H., Schwartsman, S., Scott, P., & Trow, M. (1944). The New Production of Knowledge: The Dynamics of Science and Research in Comtemporary Societies, London: SAGE publications.
  30. Gilbert, J, K. (2004). Models and modelling: Routes to more authentic science education, International Journal of Science and Mathematics Education, 2, 115-130. https://doi.org/10.1007/s10763-004-3186-4
  31. Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7, 155-170. https://doi.org/10.1207/s15516709cog0702_3
  32. Gobert, J., & Clement, J. (1999). Effects of studentgenerated diagrams versus student-generated summaries on conceptual understanding of causal and dynamic knowledge in plate tectonics. Journal of Research in ScienceTeaching, 36, 39-53.
  33. Harlow, D, B., Bianchini, J, A., Swanson, L, H. & Dywer, H, A. (2013). Potential teachers' appropriate and inappropriate application of pedagogical resources in a model-based physics course: A knowledge in pieces perspective on teacher learning. Journal of Research in ScienceTeaching, 50, 1098-1126.
  34. Hewson, P, W., & Hewson, A, G, A. (1984). The role of conceptual conflict in conceptual change and the design of science instruction. Instructional Science, 13, 1-13. https://doi.org/10.1007/BF00051837
  35. Holyoak, K, J. & Thagard, P, R. (1995). Mental leaps: Anaogy in creative thought. Cambridge, MA: The MIT Press.
  36. Ingram, J.B. (1979). Curriculum Integration and Lifelong Education, London: Elsevier Ltd. 교육 과정 통합과 평생 교육, 배진수.이영만 옮김, 서울: 학지사.
  37. Kelly, G, J., & Green, J. (1998). The Social Nature of Knowing: Toward a Sociocultural Perspective on Conceptual Change and Knowledge Construction. B. Guzzetti & C. Hynd (Eds.), Perspectives on conceptual change: Multiple ways to understanding, knowing and learning in a complex world, New Jersey: Lawrence Erlbaum Associates.
  38. Klein, J, T. (1996). Crossing Boundarie. Charlottoesville: University press of Virginia.
  39. Klein, J, T. (2001). Transdicsiplenarity: Joint problem Solving among Science. Technology, and Society, Basel: Birkhauser.
  40. Laszlo, E. (1996). The Systems View of the World a Holistic Vision for Our Time. Cresskill (N.J.) by Hampton press.
  41. Levin, S, A. (1998). Ecosystems and the biosphere as complex adaptive systems. Ecosystems, 1, 431-436. https://doi.org/10.1007/s100219900037
  42. Ludwig, von B. (1968). Organismic psychology and systems theory. Worchester: Clark University Press.
  43. Maturana, H, R., Varela, F, J. (1980). Problems in the neurophysiology of cognition. Autopoiesis and cognition. Springer, Dordrecht, 41-47.
  44. Maturana, H, R., Varela, F, J. (1987). The tree of knowledge: The biological roots of human understanding. New Science Library/Shambhala Publications.
  45. Magnani, L. (2007).Creating chances through cognitive niche construction: The role of affordance. Lecture Notes in Artificial Intelligence, 4693, 917-925.
  46. Masson, M, E, J. (1995). A distributed memory model of semantic priming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 3-23. https://doi.org/10.1037/0278-7393.21.1.3
  47. McTighe, J., Sief, E., and Wiggins, G. (2004). You can teach for meaning. Educational Leadership, 62, 26-30.
  48. Morrow, L, M., Pressley, M., Smith, J, K. & Smith, M. (1997). The effect of literature-based program integrated into literacy and sciencd instruction with children from diverse backgrounds. Reading Research Quarterly, 32, 54-76. https://doi.org/10.1598/RRQ.32.1.4
  49. Oh, J-Y. & Jeon, E, C. (2017). Greenhouse Effect in Global Warming based on Analogical reasoning. Foundations of Science, 22(4), 827-849. https://doi.org/10.1007/s10699-016-9501-z
  50. Posner, G. J., Strike, K, A., Hewson, P, W. & Gertzog, W, A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science education, 66, 211-227. https://doi.org/10.1002/sce.3730660207
  51. Rea-Ramirez, M, A. (1998). Model of conceptual understanding in human respiration and strategies for instruction(Doctoral dissertation, University of Massachusetts, Amherst, 1998). Dissertation Abstracts International, 59(10), 5196B. (Publication No. 9909208).
  52. Reeves, D, B. (2002). Making standards work: How to implement standards-based assessments in the classroom, school and district. Lead+ Learn Press.
  53. Riemeier, T., & Gropengie er, H. (2008). On the roots of difficulties in learning about cell division: Process-based analysis of students' conceptual development in teaching experiments. International Journal of Science Education, 30, 923-939. https://doi.org/10.1080/09500690701294716
  54. Ripple, W. J., and Robert L. Beschta, (2004). Wolves and the ecology of fear: can predation risk structure ecosystems?. Bio Science, 54, 755-766.
  55. Shahid, N. & Li, S. (1997). Biodiversity enhances ecosystem reliability. Nature, 390, 507-509. https://doi.org/10.1038/37348
  56. Southerland, S, A., Johnston. A., & Sowell, S. (2006). Describing teachers' Conceptual ecologies for the nature of science. Science Education, 90, 874-906. https://doi.org/10.1002/sce.20153
  57. Steiner, C, F., Long, Z, T., Krumins, J, A. & Morin, P, J. (2006). Population and community resilience in multitrophic communities. Ecology, 87(4), 996-1007. https://doi.org/10.1890/0012-9658(2006)87[996:PACRIM]2.0.CO;2
  58. Sternberg, R, J. (2005). Cognitive psychologyThomson Learning, Inc., 인지심리학, 김민식.손영숙.안서원 옮김. 서울: 박학사
  59. Strike, K, A. & Posner, G. J. (1985). A conceptual change view of learning and understand. L. H. T. West, & A. L. Pines(Eds), Cognitive structure and conceptual change, London: Academy Press.
  60. Taber, K, S. (2001). Shifting sands: A case study of conceptual development as competition between alternative conceptions. International Journal of Science Education, 23, 731-753. https://doi.org/10.1080/09500690010006572
  61. Tolmie, A. K., Topping, K, J., Christie, D., Donaldson, C., Howe, C., Jessiman, E., Livingston, K. & Thurston, A. (2010). Social effects of collaborative learning in primary schools. Learning and Instruction, 20, 177-191. https://doi.org/10.1016/j.learninstruc.2009.01.005
  62. Toulmin, S. (1972). Human understanding: The collective use and evolution of concepts. UK: Clarendon Press.
  63. Thorley, N, R. (1990). The role of the conceptual change model in the interpretation classroom interactions. Unpublished dissertation. Madison, Wisconsin: University of Wisconsin.
  64. Wiggins, G, P. & McTighe, J. (2005) Understanding by design (2nd ed.). Alexandria, VA: Association for Supervision and Curriculum Development ASCD. Colomb. Appl. Linguist. J., 19(1), 140-142.
  65. Wiggins, G, P. & McTighe, J. (2008). Put understanding first. Educational Leadership, 65, 36.
  66. William, H. (1983). Metaphysics. InterVarsity Press.