DOI QR코드

DOI QR Code

Characterization of saturation of CR-39 detector at high alpha-particle fluence

  • Ghazaly, M. El (Department of Physics, Faculty of Science, Zagazig University) ;
  • Hassan, Nabil M. (Department of Physics, Faculty of Science, Zagazig University)
  • Received : 2017.01.20
  • Accepted : 2017.11.24
  • Published : 2018.04.25

Abstract

The occurrence of saturation in the CR-39 detector reduces and limits its detection dynamic range; nevertheless, this range could be extended using spectroscopic techniques and by measuring the net bulk rate of the saturated CR-39 detector surface. CR-39 detectors were irradiated by 1.5 MeV high alpha-particle fluence varying from $0.06{\times}10^8$ to $7.36{\times}10^8\;alphas/cm^2$ from Am-241 source; thereafter, they were etched in a 6.25N NaOH solution at a temperature of $70^{\circ}C$ for different durations. Net bulk etch rate measurement of the 1.5 MeV alpha-irradiated CR-39 detector surface revealed that rate increases with increasing etching time and reaches its maximum value at the end of the alpha-particle range. It is also correlated with the alpha-particle fluence. The measurements of UV-Visible (UV-Vis) absorbance at 500 and 600 nm reveal that the absorbance is linearly correlated with the fluence of alpha particles at the etching times of 2 and 4 hour. For extended etching times of 6, 10, and 14.5 hour, the absorbance is saturated for fluence values of $4.05{\times}10^8$, $5.30{\times}10^8$, and $7.36{\times}10^8\;alphas/cm^2$. These new methods pave the way to extend the dynamic range of polymer-based solid state nuclear track detectors (SSNTDs) in measurement of high fluence of heavy ions as well as in radiation dosimetry.

Keywords

References

  1. S.A. Durrani, R.K. Bull, Solid State Nuclear Track Detection, Principles, Methods and Applications, Pergamon Press, 1987.
  2. M. El Ghazaly, On the X-ray reflectivity by poly allyl diglycol carbonate (PADC), J. Korean Phys. Soc. 59 (1) (2011) 55-58. https://doi.org/10.3938/jkps.59.55
  3. M. El Ghazaly, On alpha particle spectroscopy based on the over-etched track length in PADC (CR-39 detector), Radiat. Eff. Def. Solids 167 (6) (2012) 421-427. https://doi.org/10.1080/10420150.2012.678009
  4. M. El Ghazaly, T.T. Salama, E.I. Khalil, Kh.M. Abd El Raouf, Comparison between different models for alpha-particle range determination and a new approach to CR-39 detector, J. Korean Phys. Soc. 61 (6) (2012) 336-341. https://doi.org/10.3938/jkps.61.336
  5. M. El Ghazaly, H.E. Hassan, Spectroscopic studies on alpha particle-irradiated PADC (CR-39 detector), Res. Phys. 4 (2014) 40-43.
  6. D. Fink, V. Hnatowicz, Fundamentals of ion-irradiated polymers, Springer Verlag, Berlin, Germany, 2007.
  7. R.L. Fleischer, P.B. Price, R.M. Walker, Nuclear Tracks in Solids: Principles and Applications, University of California Press, Berkeley, 1975.
  8. S. Gaillard, J.N. Fuchs, R.-L. Galloudec, T.E. Cowan, Study of saturation of CR39 nuclear track detectors at high ion fluence and of associated artifact patterns, Rev. Sci. Inst. 78 (2007) 013304. https://doi.org/10.1063/1.2400020
  9. S. Manzoor, I.E. Qureshi, M.A. Rana, M.I. Shahzad, G. Sher, M. Sajid, H.A. Khan, G. Giacomelli, M. Giorgini, G. Mandrioli, L. Patrizii, V. Popa, P. Serra, V. Togo, Charge identification in CR-39 nuclear track detector using relativistic lead ion fragmentation, Nucl. Inst. Methods A 453 (2000) 525-529. https://doi.org/10.1016/S0168-9002(00)00470-8
  10. D. Nikezic, K.N. Yu, Formation and growth of tracks in nuclear track materials, Mater. Sci. Eng. 46 (2004) 51-123. https://doi.org/10.1016/j.mser.2004.07.003
  11. D. Nikezic, K.N. Yu, Analyses of light scattered from etched alpha-particle tracks in PADC, Radiat. Meas. 43 (2008) 1417-1422. https://doi.org/10.1016/j.radmeas.2008.02.003
  12. I. Rajta, E. Baradacs, A.A. Bettiol, I. Csige, K. Tokesi, L. Budai, A.Z. Kiss, Optimization of particle fluence in micromachining of CR-39, Nucl. Inst. Methods Phys. Res. B 231 (2005) 384-388. https://doi.org/10.1016/j.nimb.2005.01.087
  13. M.J. Rosenberg, F.H. Seguin, C.J. Waugh, H.G. Rinderknecht, D. Orozco, J.A. Frenje, M. Gatu Johnson, H. Sio, A.B. Zylstra, N. Sinenian, C.K. Li, R.D. Petrasso, S. LePape, A.J. Mackinnon, R.M. Bionta, O.L. Landen, R.A. Zacharias, Y. Kim, H.W. Herrmann, J.D. Kilkenny, A. Nikroo, A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and ${\rho}R$ are determined in thin-shell inertial-confinementfusion implosion, Rev. Sci. Inst. 85 (4) (2014) 043302. https://doi.org/10.1063/1.4870898
  14. A.F. Saad, N.M. Al-Faitory, M. Hussein, R.A. Mohamed, Ultraviolet radiationinduced modifications of the optical and registration properties of a CR-39 nuclear track detector, Nucl. Inst. Methods B 359 (2015) 131-136. https://doi.org/10.1016/j.nimb.2015.07.094
  15. F.H. Seguin, J.A. Frenje, C.K. Li, D.G. Hicks, S. Kurebayashi, J.R. Rygg, B.-E. Schwartz, R.D. Petrasso, S. Roberts, J.M. Soures, D.D. Meyerhofer, T.C. Sangster, J.P. Knauer, C. Sorce, V. Glebov, Yu, C. Stoeckl, T.W. Phillips, R.J. Leeper, K. Fletcher, S. Padalino, Spectrometry of charged particles from inertial-confinement-fusion plasmas, Rev. Sci. Inst. 74 (2003) 975-995. https://doi.org/10.1063/1.1518141
  16. Shang Bing, CR39 radon detector, Nucl. Tracks Radiat. Meas. 22 (1-4) (1993) 451-454. https://doi.org/10.1016/0969-8078(93)90106-E
  17. M.A. Stanojev Pereira, J.G.R. Marques, J.P. Santos, Improved track-etch neutron radiography using CR-39, Nucl. Inst. Methods A 764 (2014) 310-316. https://doi.org/10.1016/j.nima.2014.07.061
  18. Uni-Waterloo, 2016. http://www.science.uwaterloo.ca/-cchieh/cact/c120/bondel.html. (Accessed 3 September 2015).
  19. T. Yamauchi, Studies on the nuclear tracks in CR-39 plastics, Radiat. Meas. 36 (73) (2003) 73-81. https://doi.org/10.1016/S1350-4487(03)00099-4
  20. T. Yamauchi, D. Mineyama, H. Nakai, K. Oda, N. Yasuda, Track core size estimation in CR-39 track detector using atomic force microscope and UVevisible spectrophotometer, Nucl. Inst. Methods B 208 (2003) 149-154. https://doi.org/10.1016/S0168-583X(03)00623-2
  21. K.N. Yu, D. Nikezic, F.M.F. Ng, J.K.C. Leung, Long term measurements of radon progeny concentrations with solid-state nuclear track detectors, Radiat. Meas. 40 (2005) 560-568. https://doi.org/10.1016/j.radmeas.2005.03.007
  22. D. Zhou, D. O'Sullivan, E. Semones, M. Weyland, Charge spectra of cosmic ray nuclei measured with CR-39 detectors in low earth orbit, Nucl. Inst. Methods A 564 (1) (2006) 262-266. https://doi.org/10.1016/j.nima.2006.05.044
  23. J.F. Ziegler, SRIM-2010. http://www.srim.org. (Accessed 3 November 2015).
  24. J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids, Pergamon Press, New York, 1985.
  25. A.B. Zylstra, J.A. Frenje, F.H. Seguin, M.G. Johnson, D.T. Casey, M.J. Rosenberg, C. Waugh, N. Sinenian, M.J.E. Manuel, C.K. Li, R.D. Petrasso, Y. Kim, H.W. Herrmann, A new model to account for track overlap in CR-39 data, Nucl. Inst. Methods Phy. Res. A 681 (2012) 84-90. https://doi.org/10.1016/j.nima.2012.04.021

Cited by

  1. Effect of alpha particle irradiations on the structural properties of graphene oxide vol.32, pp.31, 2018, https://doi.org/10.1142/s0217979218503435
  2. Effects of ECE duration on alpha particle tracks in polycarbonate nuclear track detectors over broad ranges of fluence and energy vol.14, pp.6, 2018, https://doi.org/10.1088/1748-0221/14/06/p06011