DOI QR코드

DOI QR Code

Effects of various prophylactic procedures on titanium surfaces and biofilm formation

  • Di Salle, Anna (Research Institute on Terrestrial Ecosystems, National Research Council) ;
  • Spagnuolo, Gianrico (Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II) ;
  • Conte, Raffaele (Research Institute on Terrestrial Ecosystems, National Research Council) ;
  • Procino, Alfredo (Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II) ;
  • Peluso, Gianfranco (Research Institute on Terrestrial Ecosystems, National Research Council) ;
  • Rengo, Carlo (Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II)
  • Received : 2018.09.04
  • Accepted : 2018.12.09
  • Published : 2018.12.31

Abstract

Purpose: The aim of this study was to evaluate the effects of various prophylactic treatments of titanium implants on bacterial biofilm formation, correlating surface modifications with the biofilms produced by Pseudomonas aeruginosa PAO1, Staphylococcus aureus, and bacteria isolated from saliva. Methods: Pure titanium disks were treated with various prophylactic procedures, and atomic force microscopy (AFM) was used to determine the degree to which surface roughness was modified. To evaluate antibiofilm activity, we used P. aeruginosa PAO1, S. aureus, and saliva-isolated Streptococcus spp., Bacteroides fragilis, and Staphylococcus epidermidis. Results: AFM showed that the surface roughness increased after using the air-polishing device and ultrasonic scaler, while a significant reduction was observed after using a curette or polishing with Detartrine ZTM (DZ) abrasive paste. In addition, we only observed a significant (P<0.01) reduction in biofilm formation on the DZ-treated implant surfaces. Conclusion: In this study, both AFM and antibiofilm analyses indicated that using DZ abrasive paste could be considered as the prophylactic procedure of choice for managing peri-implant lesions and for therapy-resistant cases of periodontitis.

Keywords

References

  1. Salvi GE, Cosgarea R, Sculean A. Prevalence and mechanisms of peri-implant diseases. J Dent Res 2017;96:31-7. https://doi.org/10.1177/0022034516667484
  2. Derks J, Tomasi C. Peri-implant health and disease. A systematic review of current epidemiology. J Clin Periodontol 2015;42 Suppl 16:S158-71. https://doi.org/10.1111/jcpe.12334
  3. Zitzmann NU, Berglundh T. Definition and prevalence of peri-implant diseases. J Clin Periodontol 2008;35 Suppl:286-91. https://doi.org/10.1111/j.1600-051X.2008.01274.x
  4. Albrektsson T, Buser D, Chen ST, Cochran D, DeBruyn H, Jemt T, et al. Statements from the Estepona consensus meeting on peri-implantitis, February 2-4, 2012. Clin Implant Dent Relat Res 2012;14:781-2. https://doi.org/10.1111/cid.12017
  5. Wade WG. The oral microbiome in health and disease. Pharmacol Res 2013;69:137-43. https://doi.org/10.1016/j.phrs.2012.11.006
  6. Seymour GJ, Ford PJ, Cullinan MP, Leishman S, Yamazaki K. Relationship between periodontal infections and systemic disease. Clin Microbiol Infect 2007;13 Suppl 4:3-10. https://doi.org/10.1111/j.1469-0691.2007.01798.x
  7. Pitts NB, Zero DT, Marsh PD, Ekstrand K, Weintraub JA, Ramos-Gomez F, et al. Dental caries. Nat Rev Dis Primers 2017;3:17030. https://doi.org/10.1038/nrdp.2017.30
  8. Chenicheri S, R U, Ramachandran R, Thomas V, Wood A. Insight into oral biofilm: primary, secondary and residual caries and phyto-challenged solutions. Open Dent J 2017;11:312-33. https://doi.org/10.2174/1874210601711010312
  9. Jepsen S, Berglundh T, Genco R, Aass AM, Demirel K, Derks J, et al. Primary prevention of peri-implantitis: managing peri-implant mucositis. J Clin Periodontol 2015;42 Suppl 16:S152-7. https://doi.org/10.1111/jcpe.12369
  10. Salvi GE, Ramseier CA. Efficacy of patient-administered mechanical and/or chemical plaque control protocols in the management of peri-implant mucositis. A systematic review. J Clin Periodontol 2015;42 Suppl 16:S187-201. https://doi.org/10.1111/jcpe.12321
  11. Larsen T, Fiehn NE. Dental biofilm infections - an update. APMIS 2017;125:376-84. https://doi.org/10.1111/apm.12688
  12. Lin NJ. Biofilm over teeth and restorations: what do we need to know? Dent Mater 2017;33:667-80. https://doi.org/10.1016/j.dental.2017.03.003
  13. Subramani K, Jung RE, Molenberg A, Hammerle CH. Biofilm on dental implants: a review of the literature. Int J Oral Maxillofac Implants 2009;24:616-26.
  14. Busscher HJ, Rinastiti M, Siswomihardjo W, van der Mei HC. Biofilm formation on dental restorative and implant materials. J Dent Res 2010;89:657-65. https://doi.org/10.1177/0022034510368644
  15. Song F, Koo H, Ren D. Effects of material properties on bacterial adhesion and biofilm formation. J Dent Res 2015;94:1027-34. https://doi.org/10.1177/0022034515587690
  16. Suarez-Lopez Del Amo F, Yu SH, Wang HL. Non-surgical therapy for peri-implant diseases: a systematic review. J Oral Maxillofac Res 2016;7:e13.
  17. Ferraris S, Spriano S. Antibacterial titanium surfaces for medical implants. Mater Sci Eng C 2016;61:965-78. https://doi.org/10.1016/j.msec.2015.12.062
  18. Kreisler M, Kohnen W, Christoffers AB, Gotz H, Jansen B, Duschner H, et al. In vitro evaluation of the biocompatibility of contaminated implant surfaces treated with an Er: YAG laser and an air powder system. Clin Oral Implants Res 2005;16:36-43.
  19. Schwarz F, Ferrari D, Popovski K, Hartig B, Becker J. Influence of different air-abrasive powders on cell viability at biologically contaminated titanium dental implants surfaces. J Biomed Mater Res B Appl Biomater 2009;88:83-91.
  20. Sahm N, Becker J, Santel T, Schwarz F. Non-surgical treatment of peri-implantitis using an air-abrasive device or mechanical debridement and local application of chlorhexidine: a prospective, randomized, controlled clinical study. J Clin Periodontol 2011;38:872-8. https://doi.org/10.1111/j.1600-051X.2011.01762.x
  21. Albertini M, Lopez-Cerero L, O'Sullivan MG, Chereguini CF, Ballesta S, Rios V, et al. Assessment of periodontal and opportunistic flora in patients with peri-implantitis. Clin Oral Implants Res 2015;26:937-41. https://doi.org/10.1111/clr.12387
  22. Canullo L, Rossetti PH, Penarrocha D. Identification of Enterococcus faecalis and Pseudomonas aeruginosa on and in implants in individuals with peri-implant disease: a cross-sectional study. Int J Oral Maxillofac Implants 2015;30:583-7. https://doi.org/10.11607/jomi.3946
  23. Harris LG, Mead L, Muller-Oberlander E, Richards RG. Bacteria and cell cytocompatibility studies on coated medical grade titanium surfaces. J Biomed Mater Res A 2006;78:50-8.
  24. Renvert S, Lindahl C, Renvert H, Persson GR. Clinical and microbiological analysis of subjects treated with Branemark or AstraTech implants: a 7-year follow-up study. Clin Oral Implants Res 2008;19:342-7. https://doi.org/10.1111/j.1600-0501.2007.01476.x
  25. Mehl C, Kern M, Zimmermann A, Harder S, Huth S, Selhuber-Unkel C. Impact of cleaning procedures on adhesion of living cells to three abutment materials. Int J Oral Maxillofac Implants 2017;32:976-84. https://doi.org/10.11607/jomi.5630
  26. Cafiero C, Aglietta M, Iorio-Siciliano V, Salvi GE, Blasi A, Matarasso S. Implant surface roughness alterations induced by different prophylactic procedures: an in vitro study. Clin Oral Implants Res 2017;28:e16-20. https://doi.org/10.1111/clr.12849
  27. Chen CJ, Ding SJ, Chen CC. Effects of surface conditions of titanium dental implants on bacterial adhesion. Photomed Laser Surg 2016;34:379-88. https://doi.org/10.1089/pho.2016.4103
  28. Ametrano G, D'Anto V, Di Caprio MP, Simeone M, Rengo S, Spagnuolo G. Effects of sodium hypochlorite and ethylenediaminetetraacetic acid on rotary nickel-titanium instruments evaluated using atomic force microscopy. Int Endod J 2011;44:203-9. https://doi.org/10.1111/j.1365-2591.2010.01799.x
  29. Spagnuolo G, Ametrano G, D'Anto V, Rengo C, Simeone M, Riccitiello F, et al. Effect of autoclaving on the surfaces of TiN-coated and conventional nickel-titanium rotary instruments. Int Endod J 2012;45:1148-55. https://doi.org/10.1111/j.1365-2591.2012.02088.x
  30. D'Anto V, Rongo R, Ametrano G, Spagnuolo G, Manzo P, Martina R, et al. Evaluation of surface roughness of orthodontic wires by means of atomic force microscopy. Angle Orthod 2012;82:922-8. https://doi.org/10.2319/100211-620.1
  31. Rongo R, Ametrano G, Gloria A, Spagnuolo G, Galeotti A, Paduano S, et al. Effects of intraoral aging on surface properties of coated nickel-titanium archwires. Angle Orthod 2014;84:665-72. https://doi.org/10.2319/081213-593.1
  32. Mandrich L, Cerreta M, Manco G. An engineered version of human PON2 opens the way to understand the role of its post-translational modifications in modulating catalytic activity. PLoS One 2015;10:e0144579. https://doi.org/10.1371/journal.pone.0144579
  33. Guillemot F, Prima F, Tokarev VN, Belin C, Porte-Durrieu MC, Gloriant T, et al. Ultraviolet laser surface treatment for biomedical applications of ${\beta}$ titanium alloys: morphological and structural characterization. Appl Phys, A Mater Sci Process 2003;77:899-904. https://doi.org/10.1007/s00339-003-2162-0
  34. Gallardo-Moreno AM, Pacha-Olivenza MA, Fernandez-Calderon MC, Perez-Giraldo C, Bruque JM, Gonzalez-Martin ML. Bactericidal behaviour of Ti6Al4V surfaces after exposure to UV-C light. Biomaterials 2010;31:5159-68. https://doi.org/10.1016/j.biomaterials.2010.03.005
  35. Fox SC, Moriarty JD, Kusy RP. The effects of scaling a titanium implant surface with metal and plastic instruments: an in vitro study. J Periodontol 1990;61:485-90. https://doi.org/10.1902/jop.1990.61.8.485
  36. Mengel R, Buns CE, Mengel C, Flores-de-Jacoby L. An in vitro study of the treatment of implant surfaces with different instruments. Int J Oral Maxillofac Implants 1998;13:91-6.
  37. Hallmon WW, Waldrop TC, Meffert RM, Wade BW. A comparative study of the effects of metallic, nonmetallic, and sonic instrumentation on titanium abutment surfaces. Int J Oral Maxillofac Implants 1996;11:96-100.
  38. Quirynen M, Bollen CM, Papaioannou W, Van Eldere J, van Steenberghe D. The influence of titanium abutment surface roughness on plaque accumulation and gingivitis: short-term observations. Int J Oral Maxillofac Implants 1996;11:169-78.
  39. Louropoulou A, Slot DE, Van der Weijden FA. Titanium surface alterations following the use of different mechanical instruments: a systematic review. Clin Oral Implants Res 2012;23:643-58. https://doi.org/10.1111/j.1600-0501.2011.02208.x
  40. Bennani V, Hwang L, Tawse-Smith A, Dias GJ, Cannon RD. Effect of air-polishing on titanium surfaces, biofilm removal, and biocompatibility: a pilot study. BioMed Res Int 2015;2015:491047.

Cited by

  1. FEM Analysis of Dental Implant-Abutment Interface Overdenture Components and Parametric Evaluation of Equator ® and Locator ® Prosthodontics Attachments vol.12, pp.4, 2019, https://doi.org/10.3390/ma12040592
  2. Influence of Implant Dimensions and Position on Implant Stability: A Prospective Clinical Study in Maxilla Using Resonance Frequency Analysis vol.9, pp.5, 2019, https://doi.org/10.3390/app9050860
  3. Effect of Different Surface Treatments on Titanium Dental Implant Micro-Morphology vol.12, pp.5, 2018, https://doi.org/10.3390/ma12050733
  4. Sandblasted and Acid Etched Titanium Dental Implant Surfaces Systematic Review and Confocal Microscopy Evaluation vol.12, pp.11, 2018, https://doi.org/10.3390/ma12111763
  5. Biological and Chemo-Physical Features of Denture Resins vol.13, pp.15, 2018, https://doi.org/10.3390/ma13153350
  6. Antimicrobial and Antibiofilm Activity of Curcumin-Loaded Electrospun Nanofibers for the Prevention of the Biofilm-Associated Infections vol.26, pp.16, 2018, https://doi.org/10.3390/molecules26164866