DOI QR코드

DOI QR Code

A Review of Nanostructured Ca-aluminate Based Biomaterials within Odontology and Orthopedics

  • Received : 2017.12.19
  • Accepted : 2018.01.25
  • Published : 2018.03.31

Abstract

This presentation will give an overview of Ca-aluminate based biomaterials and their proposed use within the field of nanostructured biomaterials. The paper describes typical features of Ca-aluminate materials with regard to technology, chemistry, biocompatibility including hemocompatibility and bioactivity, and developed microstructure. Special focus will be on the developed microstructure, which is in the nanosize range. Application possibilities within odontology, orthopedics, and drug delivery are presented. The nanostructure including pore size below 5 nm in these structures opens up this material for some use in specific dental-related applications in which antibacterial and bacteriostatic aspects are of importance, and as thin coating on implants within dental and orthopaedic applications. Nanosize porosity is essential in drug delivery systems for controlled release of medicaments. The priority field for Ca-aluminate biomaterials is implant materials, which use minimally-invasive techniques to offer in vivo, on-site developed biomaterials.

Keywords

References

  1. J. Park and R. S. Lakes, Biomaterials: An Introduction; Springer, 2007.
  2. L. Hermansson, "Nanostructural Chemically Bonded Ca-aluminate Based Biomaterials," pp. 47-74 in Biomaterials - Physics and Chemistry, Ed. by R Pignatello, InTech, Rijeka, 2011.
  3. L. Hermansson, "Classification and Summary of Beneficial Features of Nanostructural Chemically Bonded Bioceramics," pp. 133-37 in Nanostructural Bioceramics: Advances in Chemically Bonded Ceramics, CRC Press, Boca Raton, 2015.
  4. L. L. Hench, "Biomaterials: A Forecast for the Future," Biomaterials, 19 [6] 1419-23 (1998). https://doi.org/10.1016/S0142-9612(98)00133-1
  5. R. B. Martin, "Bone as a Ceramic Composite Material," Mater. Sci. Forum, 293 5-16 (1999).
  6. S. R. Simon, Orthopaedic Basic Science; Amer Academy of Orthopaedic, 1994.
  7. P. F. Heini and U. Berlemann, " Bone Substitutes in Vertebroplasty," Eur. Spine J., 10 205-13 (2001). https://doi.org/10.1007/s005860100308
  8. I. H. Liebermann, D. Togawa, and M. M. Kayanja, "Vertebroplasty and Kyphoplasty: Filler Materials," Spine J., 5 305-16 (2005). https://doi.org/10.1016/j.spinee.2005.02.020
  9. M. Bohner, "Calcium Ortophosphates in Medicine: from Ceramics to Calcium Phosphate Cements," Injury, 31 [4] 37-47 (2000).
  10. H. Engqvist, M. Couillard, G. A. Botton, M. W. Phaneuf, N. Axen, N.-O. Ahnfelt, and L. Hermansson, "In vivo Bioactivity of a Novel Mineral Based Orthopaedic Biocement," Trends Biomater. Artif. Organs, 19 27-32 (2005).
  11. T. Jarmar, T. Uhlin, U. Höglund, P. Thomsen, L. Hermansson, and H. Engqvist, "Injectable Bone Cements for Vertebroplasty Studied in Sheep Vertebrae with Electron Microscopy," Key Eng. Mater., 361-363 373-76 (2008).
  12. H. Engqvist, S. Edlund, G. Gomez-Ortega, J. Loof, L. Hermansson, "In Vitro Mechanical Properties of a Calcium Silicate Based Bone Void Filler," Key Eng. Mater., 309-311 829-32 (2006). https://doi.org/10.4028/www.scientific.net/KEM.309-311.829
  13. A. Faris, H. Engqvist, J. Loof, M. Ottosson, and L. Hermansson, "In Vitro Bioactivity of Injectable Ceramic Orthopaedic Cements," Key Eng. Mater., 309-311 833-36 (2006). https://doi.org/10.4028/www.scientific.net/KEM.309-311.833
  14. H. Engqvist, T. Persson, J. Loof, A. Faris, and L. Hermansson, "Chemical Stability of a Novel Bioceramic for Stabilisation of Vertebtal Compression," Trends Biomater. Artif. Organs, 21 [2] 98-106 (2008).
  15. J. Loof, A. Faris, L. Hermansson, and H. Engqvist, "In Vitro Biomechanical Testing of Two Injectable Materials for Vertebroplasty in Different Synthetic Bone," Key Eng. Mater. 361-363 369-72 (2008).
  16. K. Breding and H. Engqvist, "Strength and Chemical Stability due to Aging of Two Bone Void Filler Materials," Key Eng. Mater., 361-363 315-18 (2008).
  17. A. Muan and E. F. Osborn, Phase Equilibria among Oxides in Steelmaking; Addison-Wesley, New York, 1965.
  18. L. Kraft, Calcium Aluminate Based Cement as Dental Restorative Materials, in Ph.D. Thesis, Uppsala University, Sweden, 2002.
  19. J. Loof, Calcium Aluminate as Biomaterial, Design and Evaluation, in Ph.D. Thesis, Uppsala University, Sweden, 2008.
  20. L. Kraft, M. Saksi, L. Hermansson, C. H. Pameijer, "A Five Year Retrospective Clinical Study of a Calcium-Aluminate in Retrograde Endodontics," J. Dent. Res., 88 1383 (2009).
  21. H. Engqvist, J. E. Schultz-Walz, J. Loof, G. A. Botton, D. Mayer, M. W. Phaneuf, N.-O. Ahnfelt, and L. Hermansson, "Chemical and Biological Integration of a Mouldable Bioactive Ceramic Material Capable of Forming Apatite in vivo in Teeth," Biomaterials, 25 2781-87 (2004). https://doi.org/10.1016/j.biomaterials.2003.09.053
  22. H. Engqvist, G. A. Botton, M. Couillard, S. Mohammadi, J. Malmström, L. Emanuelsson, L. Hermansson, M. W. Phaneuf, and P. Thomsen, "A New Tool for High-Resolution Transmission Electron Microscopy of Intact Interfaces between Bone and Metallic Implants," J. Biomed. Mater. Res. A, 78 [1] 20-4 (2006).
  23. H. Engqvist and L. Hermansson, "Chemically Bonded Bioceramics Based on Ca-Aluminates and Silicates," Ceram. Trans., 172 221-28 (2006).
  24. L. Hermansson, J. Loof, and T. Jarmar, "Integration Mechanisms towards Hard Tissue of Ca-Aluminate Based Materials," Key Eng. Mater., 396-398 183-86 (2009).
  25. L. Hermansson, "Nanostructures and Specific Properties," pp. 105-29 in Nanostructural Bioceramics: Advances in Chemically Bonded Ceramics, Pan Stanford Publishing, 2015.
  26. H. Engqvist, J.-E. Schultz-Walz, J. Loof, G. A. Botton, D. Mayer, M. W. Phaneuf, N.-O. Ahnfelt, and L. Hermansson "Chemical and Biological Integration of a Mouldable Bioactive Ceramic Material Capable of Forming Apatite in vivo in Teeth," Biomaterials, 25 [14] 2781-87 (2004). https://doi.org/10.1016/j.biomaterials.2003.09.053
  27. H. Engqvist, G. A. Botton, M. Couillard, S. Mohammadi, J. Malmstrom, L. Emanuelsson, L. Hermansson, M. W. Phaneuf, and P. Thomsen, "A New Tool for High-Resolution Transmission Electron Microscopy of Intact Interfaces between Bone and Metallic Implants," J. Biomed. Mater. Res. A, 78 20-4 (2006).
  28. L. Kraft, H. Engqvist, and L. Hermansson, "Early-Age Deformation, Drying Shrinkage and Thermal Dilatation in a New Type of Dental Restorative Material based on Calcium Aluminate Cement," Cem. Concr. Res., 34 [3] 439-46 (2004). https://doi.org/10.1016/j.cemconres.2003.08.028
  29. L. Hermansson, H. Engqvist, G. Gomez-Ortega, E. Abrahamsson, and K. Bjorklund, "Nanosize Biomaterials Based on Ca-Aluminate," Key Eng. Mater., 49 21-6 (2006).
  30. N. Axen, H. Engqvist, J. Loof, P. Thomsen, and L. Hermansson, "In vivo Hydrating Calcium Aluminate Coatings for Anchoring of Metal Implants in Bone," Key Eng. Mater., 284-286 831-34 (2005). https://doi.org/10.4028/www.scientific.net/KEM.284-286.831
  31. E. Unosson, E. Cai, E. Jiang, J. Loof, and H. Engqvist, "Antibacterial Properties of Dental Luting Agents Potential to Hinder the Development of Secondary Caries," Int. J. Dent., 2012 529495 (2012).
  32. L. Hermansson, "Nanostructures and Specific Properties," pp. 57-67 in Nanostructural Bioceramics: Advances in Chemically Bonded Ceramics, Pan Stanford Publishing, 2015.
  33. J. Loof, H. Engqvist, G. Gomez-Ortega, H. Spengler, N.-O. Ahnfelt, and L. Hermansson, "Mechanical Property Aspects of a Biomineral Based Dental Restorative System," Key Eng. Mater., 284-286 741-44 (2005). https://doi.org/10.4028/www.scientific.net/KEM.284-286.741
  34. L. Hermansson, L. Kraft, K. Lindqvist, N.-O. Ahnfelt, and H. Engqvist, "Flexural Strength Measurement of Ceramic Dental Restorative Materials," Key Eng. Mater., 361-363 873-76 (2008).
  35. L. Hermansson, "Dental Applications within Chemically Bonded Bioceramics," pp. 71-9 in Nanostructural Bioceramics: Advances in Chemically Bonded Ceramics, Pan Stanford Publishing, 2015.
  36. C. H. Pameijer, O. Zmener, S. A. Serrano, and F. Garcia-Godoy, "Sealing Properties of a Calcium Aluminate Luting Agent," Am. J. Dent., 23 [2] 121-24 (2010).
  37. J. Aberg, Premixed Acidic Calcium Phosphate Cements, in Ph.D. Thesis, Uppsala University, Sweden, 2011.
  38. J. Aberg, Ph D Thesis, Uppsala University, Premixed Acidic Calcium Phosphate Cements (2011).
  39. H. Engqvist, M. Couillard, G. A. Botton, M. W. Phaneuf, N. Axen, N.-O. Ahnfelt, and L. Hermansson, "In vivo Bioactivity of a Novel Mineral Based Orthopaedic Biocement," Trends Biomater. Artif. Organs, 19 [1] 27-32 (2005).
  40. L. Hermansson, H. Engqvisy, J. Loof, G. Gomez-Ortega, E. Abrahamsson, and K. Bjorklund, "Nanosize biomaterials based on Ca-aluminates," Adv. Sci. Technol., 49 21-6 (2006). https://doi.org/10.4028/www.scientific.net/AST.49.21
  41. A. Krajewski, A. Ravaglioli, E. Roncari, P. Pinasco, and L. Montanari, "Porous Ceramic Bodies for Drug Delivery," J. Mater. Sci.: Mater. Med., 11 [12] 763-67 (2000). https://doi.org/10.1023/A:1008988127294
  42. A. Lasserre and P. K. Bajpaj, "Ceramic drug-delivery devices," Crit. Rev. Ther. Drug Carrier Syst., 15 [1] 1-56 (1998).
  43. L. Yang, B. Sheldon, and T. J. Webster, "Nanophase Ceramics for Improved Drug Delivery," Am. Ceram. Soc. Bull., 89 [2] 24-32 (2010).
  44. J. Forsgren, Functional Ceramics in Biomedical Applications, in Ph.D. Thesis, Uppsala University, Sweden, 2010.

Cited by

  1. Biocompatible Hydrotalcite Nanohybrids for Medical Functions vol.10, pp.2, 2018, https://doi.org/10.3390/min10020172
  2. Compositions of calcium aluminate cement containing gold and silver nanoparticles for biomaterial applications vol.36, pp.2, 2020, https://doi.org/10.1007/s42600-020-00045-z