DOI QR코드

DOI QR Code

A Simple Real-Time DMPPT Algorithm for PV Systems Operating under Mismatch Conditions

  • Aniruddha, Kamath M. (Department of Electrical Engineering, National Institute of Technology) ;
  • Jayanta, Biswas ;
  • Anjana, K.G. (Department of Electrical Engineering, National Institute of Technology) ;
  • Mukti, Barai (Department of Electrical Engineering, National Institute of Technology)
  • Received : 2017.05.28
  • Accepted : 2017.12.13
  • Published : 2018.05.20

Abstract

This paper presents a distributed maximum power point tracking (DMPPT) algorithm based on the reference voltage perturbation (RVP) method for the PV modules of a series PV string. The proposed RVP-DMPPT algorithm is developed to accurately track the maximum power point (MPP) for each PV module operating under all atmospheric conditions with a reduced hardware overhead. To study the influence of parameters such as the controller reference voltage ($V_{ref}$) and PV current ($I_{pv}$) on the PV string voltage, a small signal model of a unidirectional differential power processing (DPP) based PV-Bus architecture is developed. The steady state and dynamic performances of the proposed RVP DMPPT algorithm and small signal model of the unidirectional DPP based PV-Bus architecture are demonstrated with simulations and experimental results. The accuracy of the RVP DMPPT algorithm is demonstrated by obtaining a tracking efficiency of 99.4% from the experiment.

Keywords

References

  1. S. Strache, R. Wunderlich, and S. Heinen, "A comprehensive, quantitative comparison of inverter architectures for various PV systems, PV cells, and irradiance profiles," IEEE Trans. Sustain. Energy, Vol. 5, No. 3, pp. 813-822, Jul. 2014. https://doi.org/10.1109/TSTE.2014.2304740
  2. L. L. Villa, X. Pichon, F. S. Ardebili, B. Raison, J. Crebier, and A. Labonne, "Towards the design of control algorithms for a photovoltaic equalizer: Choosing the optimal switching strategy and the duty cycle," IEEE Trans. Power Electron., Vol. 29, No. 3, pp. 1447-1460, Mar. 2014. https://doi.org/10.1109/TPEL.2013.2260177
  3. I. R. Balasubramanian, S. I. Ganesan, and N. Chilakapati, "Impact of partial shading on the output power of PV systems under partial shading conditions," IET Power Electron., Vol. 7, No. 3, pp. 657-666, Mar. 2014. https://doi.org/10.1049/iet-pel.2013.0143
  4. S. Moballegh and J. Jiang, "Modeling, prediction, and experimental validations of power peaks of PV arrays under partial shading conditions." IEEE Trans. Sustain. Energy, Vol. 5, No. 1, pp. 293-300, Jan. 2014. https://doi.org/10.1109/TSTE.2013.2282077
  5. C. Rahmann, V. Vittal, J. Ascui, and J. Haas, "Mitigation control against partial shading effects in large-scale PV power plants," IEEE Trans. Sustain. Energy, Vol. 7, No. 1, pp. 293-300, Jan. 2016.
  6. G. N. Psarros, E. I. Batzelis, and S. A. Papathanassiou, "Partial shading analysis of multistring PV arrays and derivation of simplified MPP expressions," IEEE Trans. Sustain. Energy, Vol. 6, No. 2, pp. 499-508, Apr. 2015. https://doi.org/10.1109/TSTE.2015.2389715
  7. S. Lyden and Md. E. Haque, "A simulated annealing global maximum power point tracking approach for PV modules under partial shading conditions," IEEE Trans. Power Electron., Vol. 31, No. 6, pp. 4171-4181, Jun. 2016. https://doi.org/10.1109/TPEL.2015.2468592
  8. M. Boztepe, F. Guinjoan, G. Velasco-Quesada, S. Silvestre, A. Chouder, and E. Karatepe, "Global MPPT scheme for photovoltaic string inverters based on restricted voltage window search algorithm," IEEE Trans. Industrial Electron., Vol. 61, No. 7, pp. 3302-3312, Jul. 2014. https://doi.org/10.1109/TIE.2013.2281163
  9. E. Koitroulis and F. Blaabjerg, "A new technique for tracking the global maximum power point of PV arrays operating under partial-shading conditions," IEEE J. Photovoltaics, Vol. 2, No. 2, pp. 184-190, Apr. 2012. https://doi.org/10.1109/JPHOTOV.2012.2183578
  10. X. Li, H. Wen, Y. Hu, L. Jiang, and W. Xiao, "Modified beta algorithm for GMPPT and partial shading detection in photovoltaic systems," IEEE Trans. Power Electron., Vol. 33, No. 3, pp. 2172-2186, Mar. 2017.
  11. H. Patel and V. Agarwal, "MATLAB-based modeling to study the effects of partial shading on PV array characteristics," IEEE Trans. Energy Convers., Vol. 23, No. 1, pp. 302-310, Mar. 2008. https://doi.org/10.1109/TEC.2007.914308
  12. J. D. Bastidas-Rodriguez, E. Franco, G. Petrone, C. A. Ramos-Paja, and G. Spagnuolo, "Maximum power point tracking architectures for photovoltaic systems in mismatching conditions: A review," IET Power Electron, Vol. 7, No. 6, pp. 1396-1413, Nov. 2014. https://doi.org/10.1049/iet-pel.2013.0406
  13. F. Wang, R. Gou, T. Zhu, Y. Yang, and F. Zhuo, "Comparison of DMPPT PV system with different topologies," in Proc. CICED, pp. 1-5, Aug. 2016.
  14. C.-W. Chen and Y.-M. Chen, "Analysis of the series connected distributed maximum power point tracking PV system." in Proc. APEC, pp. 3083-3088, Mar. 2015.
  15. G. Petrone, G. Spagnuolo, and M. Vitelli, "An analog technique for distributed MPPT PV applications," IEEE Trans. Ind. Electron., Vol. 59, No. 12, pp. 4713-4722, Dec. 2012. https://doi.org/10.1109/TIE.2011.2177613
  16. S. Sajadian and R. Ahmadi, "Distributed maximum power point tracking using model predictive control for photovoltaic energy harvesting architectures based on cascaded power optimizers," IEEE J. Photovolt., Vol. 7, No. 3, pp. 849-857, May 2017. https://doi.org/10.1109/JPHOTOV.2017.2680601
  17. P. S. Shenoy, K. A. Kim, B. B. Johnson, and P. T. Krein, "Differential power processing for increased energy production and reliability of photovoltaic systems," IEEE Trans. Power Electron., Vol. 28, No. 6, pp. 2968-2979, Jun. 2013. https://doi.org/10.1109/TPEL.2012.2211082
  18. A. Diab-Marzouk and O. Trescases, "SiC-based bidirectional cuk converter with differential power processing and MPPT for a solar powered aircraft," IEEE Trans. Transport. Electrific., Vol. 1, No. 4, pp. 369-381, Dec. 2015. https://doi.org/10.1109/TTE.2015.2505302
  19. Y.-T. Jeon, H. Lee, K. A. Kim, and J.-H. Park, "Least power point tracking method for photovoltaic differential power processing systems," IEEE Trans. Power Electron., Vol. 32, No. 3, pp. 1941-1951, Mar. 2017. https://doi.org/10.1109/TPEL.2016.2556746
  20. Y. Levron, D. R. Clement, B. Choi, C. Olalla, and D. Maksimovic, "Control of submodule integrated converters in the isolated-port differential power-processing photovoltaic architecture," IEEE J. Emerg. Sel. Topics Power Electron., Vol. 2, No. 4, pp. 821-832, Dec. 2014. https://doi.org/10.1109/JESTPE.2014.2326972
  21. P. K. Peter, and V. Agarwal, "Current equalization in photovoltaic strings with module integrated ground-isolated switched capacitor DC-DC converters," IEEE J. Photovolt., Vol. 4, No. 2, pp. 669-678, Mar. 2014. https://doi.org/10.1109/JPHOTOV.2014.2300754
  22. P. Sharma and V. Agarwal, "Maximum power extraction from a partially shaded PV array using shunt-series compensation" IEEE J. Photovolt., Vol. 4, No. 4, pp. 1128-1137, Jul. 2014. https://doi.org/10.1109/JPHOTOV.2014.2323698
  23. P. Sharma and V. Agarwal, "Exact maximum power point tracking of grid-connected partially shaded PV source using current compensation concept," IEEE Trans. Power Electron., Vol. 29, No. 6, pp. 4684-4692, Sep. 2014. https://doi.org/10.1109/TPEL.2013.2285075
  24. G. R. Walker, J. Xue, and P. Sernia, "PV string per-module maximum power point enabling converters" in Proc. Australasian Univ. Power Eng. Conf., pp. 112-117, 2003.
  25. G. R. Walker and P. C. Sernia, "Cascaded dc-dc converter connection of photovoltaic Modules," IEEE Trans. Power Electron., Vol. 19, No. 4, pp. 1130-1139, Jul. 2004. https://doi.org/10.1109/TPEL.2004.830090
  26. T. Shimizu, M. Hirakata, T. Kamezawa, and H. Watanabe, "Generation control circuit for photovoltaic module," IEEE Trans. Power Electron., Vol.16, No.3, pp. 293-300, May 2001. https://doi.org/10.1109/63.923760
  27. M. Uno and A. Kukita, "Single-switch voltage equalizer using multistacked buck-boost converters for partially shaded photovoltaic modules," IEEE Trans. Power Electron., Vol. 30, No. 6, pp. 3091-3105, Jun. 2015. https://doi.org/10.1109/TPEL.2014.2331456
  28. M. Uno and A. Kukita, "Two-switch voltage equalizer using an LLC resonant inverter and voltage multiplier for partially shaded series-connected photovoltaic modules," IEEE Trans. Ind, Appl,, Vol. 51, No. 2, pp. 1587-1601, Apr. 2015. https://doi.org/10.1109/TIA.2014.2336980
  29. O. Khan, W. Xiao, and H. H. Zeineldin. "Gallium-nitride-based submodule integrated converters for high-efficiency distributed maximum power point tracking PV applications," IEEE Trans. Ind. Electron., Vol. 63, No. 2, pp. 966-975, Feb. 2016. https://doi.org/10.1109/TIE.2015.2491888
  30. S. Strache, R. Wunderlich, and S. Heinen, "Maximum power point tracker for small number of solar cells connected in series," in Proc. IECON, pp. 5732-5737, Oct. 2012.
  31. F. Nicola, G. Lisi, G. Petrone, G. Spagnuolo, and M. Vitelli, "Distributed maximum power point tracking of photovoltaic arrays: Novel approach and system analysis," IEEE Trans. Ind. Electron., Vol. 55, No. 7, pp. 2610-2621, Jul. 2008. https://doi.org/10.1109/TIE.2008.924035
  32. C. Olalla, D. Clement, M. Rodriguez, and D. Maksimovic, "Architectures and control of submodule integrated DC-DC converters for photovoltaic applications," IEEE Trans. Power Electron., Vol. 28, No. 6, pp. 2980-2997, Jun. 2013. https://doi.org/10.1109/TPEL.2012.2219073
  33. R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, Norwell, MA: Kluwer, 2001.
  34. Multi-crystalline PM045-055-36 series PV module datasheet, Photon Energy Systems Limited, Hyderabad, India, 2014.