DOI QR코드

DOI QR Code

PRIMITIVE IDEMPOTENTS IN THE RING F4[x]/〈xpn-1〉 AND CYCLOTOMIC Q CODES

  • Batra, Sudhir (Department of Mathematics DCR University of Science and Technology) ;
  • Mathur, Rekha (Department of Mathematics DCR University of Science and Technology)
  • Received : 2017.05.18
  • Accepted : 2017.09.14
  • Published : 2018.05.31

Abstract

The parity of cyclotomic numbers of order 2, 4 and 6 associated with 4-cyclotomic cosets modulo an odd prime p are obtained. Hence the explicit expressions of primitive idempotents of minimal cyclic codes of length $p^n$, $n{\geq}1$ over the quaternary field $F_4$ are obtained. These codes are observed to be subcodes of Q codes of length $p^n$. Some orthogonal properties of these subcodes are discussed. The minimal cyclic codes of length 17 and 43 are also discussed and it is observed that the minimal cyclic codes of length 17 are two weight codes. Further, it is shown that a Q code of prime length is always cyclotomic like a binary duadic code and it seems that there are infinitely many prime lengths for which cyclotomic Q codes of order 6 exist.

Keywords

References

  1. S. K. Arora, S. Batra, and S. D. Cohen, The primitive idempotents of a cyclic group algebra. II, Southeast Asian Bull. Math. 29 (2005), no. 2, 197-208.
  2. S. K. Arora, S. Batra, S. D. Cohen, and M. Pruthi, The primitive idempotents of a cyclic group algebra, Southeast Asian Bull. Math. 26 (2002), no. 4, 549-557. https://doi.org/10.1007/s100120200058
  3. S. K. Arora and M. Pruthi, Minimal cyclic codes of length $2p^n$, Finite Fields Appl. 5 (1999), no. 2, 177-187. https://doi.org/10.1006/ffta.1998.0238
  4. G. K. Bakshi and M. Raka, Minimal cyclic codes of length $2^m$, Ranchi Univ. Math. J. 33 (2002), 1-18 (2003).
  5. G. K. Bakshi and M. Raka, Minimal cyclic codes of length $p^nq$, Finite Fields Appl. 9 (2003), no. 4, 432-448. https://doi.org/10.1016/S1071-5797(03)00023-6
  6. S. Batra and S. K. Arora, Minimal quadratic residue cyclic codes of length $p^n$ (p odd prime), Korean J. Comput. Appl. Math. 8 (2001), no. 3, 531-547.
  7. S. Batra and S. K. Arora, Minimal quadratic residue cyclic codes of length $2^n$, J. Appl. Math. Comput. 18 (2005), no. 1-2, 25-43. https://doi.org/10.1007/BF02936554
  8. S. Batra and S. K. Arora, Some cyclic codes of length $2p^n$, Des. Codes Cryptogr. 61 (2011), no. 1, 41-69. https://doi.org/10.1007/s10623-010-9438-0
  9. David M. Burton, Elementary Number Theory, Tata McGraw-Hill Publishers, New Delhi, 2007.
  10. B. Chen, H. Liu, and G. Zhang, Some minimal cyclic codes over finite fields, Discrete Math. 331 (2014), 142-150. https://doi.org/10.1016/j.disc.2014.05.007
  11. B. Chen, H. Liu, and G. Zhang, A class of minimal cyclic codes over finite fields, Des. Codes Cryptogr. 74 (2015), no. 2, 285-300. https://doi.org/10.1007/s10623-013-9857-9
  12. C. Ding and V. Pless, Cyclotomy and duadic codes of prime lengths, IEEE Trans. Inform. Theory 45 (1999), no. 2, 453-466. https://doi.org/10.1109/18.748995
  13. K. Ding and C. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Trans. Inform. Theory 61 (2015), no. 11, 5835-5842. https://doi.org/10.1109/TIT.2015.2473861
  14. R. A. Ferraz and C. Polcino Milies, Idempotents in group algebras and minimal abelian codes, Finite Fields Appl. 13 (2007), no. 2, 382-393. https://doi.org/10.1016/j.ffa.2005.09.007
  15. P. Kumar and S. K. Arora, $\lambda$-mapping and primitive idempotents in semisimple ring $R^m$, Comm. Algebra 41 (2013), no. 10, 3679-3694. https://doi.org/10.1080/00927872.2012.674590
  16. P. Kumar, S. K. Arora, and S. Batra, Primitive idempotents and generator polynomials of some minimal cyclic codes of length $p^nq^m$, Int. J. Inf. Coding Theory 2 (2014), no. 4, 191-217. https://doi.org/10.1504/IJICOT.2014.066087
  17. J. S. Leon, J. M. Masley, and V. Pless, Duadic codes, IEEE Trans. Inform. Theory 30 (1984), no. 5, 709-714. https://doi.org/10.1109/TIT.1984.1056944
  18. F. Li, Q. Yue, and C. Li, Irreducible cyclic codes of length $4p^n$and $8p^n$, Finite Fields Appl. 34 (2015), 208-234. https://doi.org/10.1016/j.ffa.2015.01.009
  19. F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes. I, North-Holland Publishing Co., Amsterdam, 1977.
  20. V. Pless, Introduction to the Theory of Error-Correcting Codes, John Wiley & Sons, Inc., New York, 1982.
  21. V. Pless, Q-codes, J. Combin. Theory Ser. A 43 (1986), no. 2, 258-276. https://doi.org/10.1016/0097-3165(86)90066-X
  22. M. Pruthi, Cyclic codes of length $2^m$, Proc. Indian Acad. Sci. Math. Sci. 111 (2001), no. 4, 371-379. https://doi.org/10.1007/BF02829612
  23. M. Pruthi and S. K. Arora, Minimal codes of prime-power length, Finite Fields Appl. 3 (1997), no. 2, 99-113. https://doi.org/10.1006/ffta.1996.0156
  24. S. Rani, I. Singh, and S. K. Arora, Primitive idempotents of irreducible cyclic codes of length $p^nq^m$, Far East J. Math. 77 (2013), no. 1, 17-32.
  25. A. Sharma, Gurmeet K. Bakshi, V. C. Dumir, and M. Raka, Cyclotomic numbers and primitive idempotents in the ring GF$(q)[x]/({x^{p}}^{n}-1)$, Finite Fields Appl. 10 (2004), no. 4, 653-673. https://doi.org/10.1016/j.ffa.2004.01.005
  26. J. Singh and S. K. Arora, Minimal cyclic codes of length $8p^n$ over GF(q), where q is prime power of the form 8k + 5, J. Appl. Math. Comput. 48 (2015), no. 1-2, 55-69. https://doi.org/10.1007/s12190-014-0791-4
  27. K. Singh and S. K. Arora, The primitive idempotents in $FC_{2^{n}}$ - I, Int. J. Algebra 4 (2010), no. 25-28, 1231-1241.
  28. T. Storer, Cyclotomy and difference sets, Lectures in Advanced Mathematics, No. 2, Markham Publishing Co., Chicago, IL, 1967.
  29. H. Tada, S. Nishimura, and T. Hiramatsu, Cyclotomy and its application to duadic codes, Finite Fields Appl. 16 (2010), no. 1, 4-13. https://doi.org/10.1016/j.ffa.2009.11.003
  30. A. J. van Zanten, A. Bojilov, and S. M. Dodunekov, Generalized residue and t-residue codes and their idempotent generators, Des. Codes Cryptogr. 75 (2015), no. 2, 315-334. https://doi.org/10.1007/s10623-013-9905-5