DOI QR코드

DOI QR Code

Direct Growth of Graphene at Low Temperature for Future Device Applications

  • Kim, Bum Jun (SKKU of Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University) ;
  • Nasir, Tuqeer (SKKU of Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University) ;
  • Choi, Jae-Young (School of Advanced Materials Science & Engineering, Sungkyunkwan University)
  • Received : 2018.04.02
  • Accepted : 2018.05.14
  • Published : 2018.05.31

Abstract

The development of two-dimensional graphene layers has recently attracted considerable attention because of its tremendous application in various research fields. Semi-metal materials have received significant attention because of their excellent biocompatibility as well as distinct physical, chemical, and mechanical properties. Taking into account the technical importance of graphene in various fields, such as complementary metal-oxide-semiconductor technology, energy-harvesting and -storage devices, biotechnology, electronics, light-emitting diodes, and wearable and flexible applications, it is considered to be a multifunctional component. In this regard, material scientists and researchers have primarily focused on two typical problems: i) direct growth and ii) low-temperature growth of graphene. In this review, we have considered only cold growth of graphene. The review is divided into five sections. Sections 1 and 2 explain the typical characteristics of graphene with a short history and the growth methods adopted, respectively. Graphene's direct growth at low temperatures on a required substrate with a well-established application is then precisely discussed in Sections 3 and 4. Finally, a summary of the review along with future challenges is described in Section 5.

Keywords

References

  1. H. Kim, A. A. Abdala, and C. W. Macosko, "Graphene/ Polymer Nanocomposites," Macromolecules, 43 [16] 6515-30 (2010). https://doi.org/10.1021/ma100572e
  2. R. J. Young, I. A. Kinloch, L. Gong, and K. S. Novoselov, "The Mechanics of Graphene nanocomposites: A Review," Compos. Sci. Technol., 72 [12] 1459-76 (2012). https://doi.org/10.1016/j.compscitech.2012.05.005
  3. J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, "Electromechanical Resonators from Graphene Sheets," Science, 315 [5811] 490-93 (2007). https://doi.org/10.1126/science.1136836
  4. M. J. Allen, V. C. Tung, and R. B. Kaner, "Honeycomb Carbon: A Review of Graphene," Chem. Rev., 110 [1] 132-45 (2010). https://doi.org/10.1021/cr900070d
  5. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The Electronic Properties of Graphene," Rev. Mod. Phys., 81 109-62 (2009). https://doi.org/10.1103/RevModPhys.81.109
  6. F. Schwierz, "Graphene Transistors," Nat. Nanotechnol., 5 487-96 (2010). https://doi.org/10.1038/nnano.2010.89
  7. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, "Graphene Photonics and Optoelectronics," Nat. Photonics, 4 611-22 (2010). https://doi.org/10.1038/nphoton.2010.186
  8. D. A. C. Brownson, D. K. Kampouris, and C. E. Banks, "An Overview of Graphene in Energy Production and Storage Applications," J. Power Sources, 196 [11] 4873-85 (2011). https://doi.org/10.1016/j.jpowsour.2011.02.022
  9. S. Park and R. S. Ruoff, "Chemical Methods for the Production of Graphenes," Nat. Nanotechnol., 4 [4] 217-24 (2009). https://doi.org/10.1038/nnano.2009.58
  10. S. P. Pang, J. M. Englert, H. N. Tsao, Y. Hernandez, A. Hirsch, X. L. Feng, and K. Mullen, "Extrinsic Corrugation-Assisted Mechanical Exfoliation of Monolayer Graphene," Adv. Mater., 22 [47] 5374-77 (2010). https://doi.org/10.1002/adma.201002872
  11. T. L. Yoon, T. L. Lim, T. K. Min, S. H. Hung, N. Jakse, and S. K. Lai, "Epitaxial Growth of Graphene on 6H-Silicon Carbide Substrate by Simulated Annealing Method," J. Chem. Phys., 139 [20] 204702 (2013). https://doi.org/10.1063/1.4832043
  12. S. W. Poon, W. Chen, E. S. Tok, and A. T. S. Wee, "Probing Epitaxial Growth of Graphene on Silicon Carbide by Metal Decoration," Appl. Phys. Lett., 92 [10] 104102 (2008). https://doi.org/10.1063/1.2883941
  13. W.S. Kim, S. Y. Moon, N. H. Park, H. Huh, K. B. Shim, and H. Ham, "Electrical and Structural Feature of Monolayer Graphene Produced by Pulse Current Unzipping and Microwave Exfoliation of Carbon Nanotubes," Chem. Mater., 23 [4] 940-44 (2011). https://doi.org/10.1021/cm1020349
  14. A. Sinitskii, A. A. Fursina, D. V. Kosynkin, A. L. Higginbotham, D. Natelson, and J. M. Tour, "Electronic Transport in Monolayer Graphene Nanoribbons Produced by Chemical Unzipping of Carbon Nanotubes," Appl. Phys. Lett., 95 [25] 253108 (2009). https://doi.org/10.1063/1.3276912
  15. T. Ciuk, P. Caban, and W. Strupinski, "Charge Carrier Concentration and Offset Voltage in Quasi-Free-Standing Monolayer Chemical Vapor Deposition Graphene on SiC," Carbon, 101 431-38 (2016). https://doi.org/10.1016/j.carbon.2016.01.093
  16. M. S. Rosmi, S. M. Shinde, N. D. A. Rahman, A. Thangaraja, S. Sharma, K. P. Sharma, Y. Yaakob, R. K. Vishwakarma, S. A. Bakar, G. Kalita, H. Ohtani, and M. Tanemura, "Synthesis of Uniform Monolayer Graphene on Re-Solidified Copper from Waste Chicken Fat by Low Pressure Chemical Vapor Deposition," Mater. Res. Bull., 83 573-80 (2016). https://doi.org/10.1016/j.materresbull.2016.07.010
  17. J. W. Suk, W. H. Lee, T. J. Kang, and R. D. Piner, "Transfer of Chemical Vapor Deposition-Grown Monolayer Graphene by Alkane Hydrocarbon," Sci. Adv. Mater., 8 [1] 144-47 (2016). https://doi.org/10.1166/sam.2016.2618
  18. H. J. Tan, Y. Fan, Y. M. Rong, B. Porter, C. S. Lau, Y. Q. Zhou, Z. Y. He, S. S. Wang, H. Bhaskaran, and J. H. Warner, "Doping Graphene Transistors Using Vertical Stacked Monolayer $WS_2$ Heterostructures Grown by Chemical Vapor Deposition," ACS Appl. Mater. Interfaces, 8 [3] 1644-52 (2016). https://doi.org/10.1021/acsami.5b08295
  19. C. Zhao, B. Deng, G. C. Chen, B. Lei, H. Hua, H. L. Peng, and Z. M. Yan, "Large-Area Chemical Vapor Deposition-Grown Monolayer Graphene-Wrapped Silver Nanowires for Broad-Spectrum and Robust Antimicrobial Coating," Nano Res., 9 [4] 963-73 (2016). https://doi.org/10.1007/s12274-016-0984-2
  20. C. C. Chen, C. H. Yeh, C. C. Chang, and J. J. Ho, "Conversion of $CO_2$ and $C_2H_6$ to Propanoic Acid on an Iridium- Modified Graphene Oxide Surface: Quantum-Chemical Investigation," Ind. Eng. Chem. Res., 54 [5] 1539-46 (2015). https://doi.org/10.1021/ie503982t
  21. Z. Y. Jiang and L. F. Yan, "Conversion of Glucose to Valuable Platform Chemicals over Graphene Solid Acid Catayst," Chin. J. Chem. Phys., 28 [2] 230-34 (2015). https://doi.org/10.1063/1674-0068/28/cjcp1412211
  22. B. S. Shen, J. J. Ding, X. B. Yan, W. J. Feng, J. Li, and Q. J. Xue, "Influence of Different Buffer Gases on Synthesis of Few-Layered Graphene by Arc Discharge Method," Appl. Surf. Sci., 258 [10] 4523-31 (2012). https://doi.org/10.1016/j.apsusc.2012.01.019
  23. Y. P. Wu, B. Wang, Y. F. Ma, Y. Huang, N. Li, F. Zhang, and Y. S. Chen, "Efficient and Large-Scale Synthesis of Few-Layered Graphene Using an Arc-Discharge Method and Conductivity Studies of the Resulting Films," Nano Res., 3 [9] 661-69 (2010). https://doi.org/10.1007/s12274-010-0027-3
  24. N. Li, Z. Y. Wang, K. K. Zhao, Z. J. Shi, Z. N. Gu, and S. K. Xu, "Large Scale Synthesis of N-Doped Multi-Layered Graphene Sheets by Simple Arc-Discharge Method," Carbon, 48 [1] 255-59 (2010). https://doi.org/10.1016/j.carbon.2009.09.013
  25. Y. X. Zhang, X. He, G. M. Zeng, T. Chen, Z. Y. Zhou, H. T. Wang, and W. J. Lu, "Enhanced Photodegradation of Pentachlorophenol by Single and Mixed Nonionic and Anionic Surfactants Using Graphene-$TiO_2$ as Catalyst," Environ. Sci. Pollut. Res. Int., 22 [22] 18211-20 (2015). https://doi.org/10.1007/s11356-015-4785-z
  26. A. K. Geim and K. S. Novoselov, "The Rise of Graphene," Nat. Mater., 6 183-91 (2007). https://doi.org/10.1038/nmat1849
  27. C.-Y. Su, A.-Y. Lu, Y. Xu, F.-R. Chen, A. N. Khlobystov, and L.-J. Li, "High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation," ACS Nano, 5 [3] 2332-39 (2011). https://doi.org/10.1021/nn200025p
  28. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, "High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite," Nat. Nano., 3 563-68 (2008). https://doi.org/10.1038/nnano.2008.215
  29. P. W. Sutter, J.-I. Flege, and E. A. Sutter, "Epitaxial Graphene on Ruthenium," Nat. Mater., 7 406-11 (2008). https://doi.org/10.1038/nmat2166
  30. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, and A. N. Marchenkov, "Electronic Confinement and Coherence in Patterned Epitaxial Graphene," Science, 312 [5777] 1191-96 (2006). https://doi.org/10.1126/science.1125925
  31. K. V. Emtsev, F. Speck, T. Seyller, L. Ley, and J. D. Riley, "Interaction, Growth, and Ordering of Epitaxial Graphene on SiC {0001} Surfaces: A Comparative Photoelectron Spectroscopy Study," Phys. Rev. B, 77 155303 (2008). https://doi.org/10.1103/PhysRevB.77.155303
  32. J. Hass, W. A. D. Heer, and E. H. Conrad, "The Growth and Morphology of Epitaxial Multilayer Graphene," J. Phys.: Condens. Matter, 20 323202 (2008). https://doi.org/10.1088/0953-8984/20/32/323202
  33. C.-Y. Su, Y. Xu, W. Zhang, J. Zhao, A. Liu, X. Tang, C.-H. Tsai, Y. Huang, and L.-J. Li, "Highly Efficient Restoration of Graphitic Structure in Graphene Oxide Using Alcohol Vapors," ACS Nano, 4 [9] 5285-92 (2010). https://doi.org/10.1021/nn101691m
  34. G. Williams, B. Seger, and P. V. Kamat, "$TiO_2$-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide," ACS Nano, 2 [7] 1487-91 (2008). https://doi.org/10.1021/nn800251f
  35. A. A. Green and M. C. Hersam, "Solution Phase Production of Graphene with Controlled Thickness via Density Differentiation," Nano Lett., 9 [12] 4031-36 (2009).
  36. L. J. Cote, F. Kim, and J. Huang, "Langmuir-Blodgett Assembly of Graphite Oxide Single Layers," J. Am. Chem. Soc., 131 [3] 1043-49 (2008). https://doi.org/10.1021/ja806262m
  37. D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, "Processable Aqueous Dispersions of Graphene Nanosheets," Nat. Nanotechnol., 3 101-5 (2008). https://doi.org/10.1038/nnano.2007.451
  38. W. Gao, L.B. Alemany, L. Ci, and P. M. Ajayan, "New Insights into the Structure and Reduction of Graphite Oxide," Nat. Chem., 1 403-8 (2009). https://doi.org/10.1038/nchem.281
  39. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, "Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes," Nature, 457 706-10 (2009). https://doi.org/10.1038/nature07719
  40. J. Coraux, A.T. N 'Diaye, C. Busse, and T. Michely, "Structural Coherency of Graphene on Ir(111)," Nano Lett., 8 [2] 565-70 (2008). https://doi.org/10.1021/nl0728874
  41. S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, "Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes," Nat. Nanotechnol., 5 [8] 574-78 (2010). https://doi.org/10.1038/nnano.2010.132
  42. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, "Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition," Nano Lett., 9 [1] 30-5 (2008). https://doi.org/10.1021/nl801827v
  43. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, and E. Tutuc, "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, 324 [5932] 1312-14 (2009). https://doi.org/10.1126/science.1171245
  44. S. Lee, K. Lee, and Z. Zhong, "Wafer Scale Homogeneous Bilayer Graphene Films by Chemical Vapor Deposition," Nano Lett., 10 [11] 4702-7 (2010). https://doi.org/10.1021/nl1029978
  45. K. Yan, H. Peng, Y. Zhou, H. Li, and Z. Liu, "Formation of Bilayer Bernal Graphene: Layer-by-Layer Epitaxy via Chemical Vapor Deposition," Nano Lett., 11 [3] 1106-10 (2011). https://doi.org/10.1021/nl104000b
  46. Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J. M. Tour, "Growth of Graphene from Solid Carbon Sources," Nature, 468 549-52 (2010). https://doi.org/10.1038/nature09579
  47. K. Kim, J.-Y. Choi, T. Kim, S.-H. Cho, and H.-J. Chung, "A Role for Graphene in Silicon-Based Semiconductor Devices," Nature, 479 338-44 (2011). https://doi.org/10.1038/nature10680
  48. Z. Yan, Z. Peng, and J. M. Tour, "Chemical Vapor Deposition of Graphene Single Crystals," Acc. Chem. Res., 47 [4] 1327-37 (2014). https://doi.org/10.1021/ar4003043
  49. J. Sun, S. Deng, W. Guo, Z. Zhan, J. Deng, C. Xu, X. Fan, K. Xu, W. Guo, and Y. Huang, "Electrochemical Bubbling Transfer of Graphene Using a Polymer Support with Encapsulated Air Gap as Permeation Stopping Layer," J. Nanomater., 2016 51 (2016).
  50. C. T. Cherian, F. Giustiniano, I. Martin-Fernandez, H. Andersen, J. Balakrishnan, and B. Ozyilmaz, "'Bubble- Free' Electrochemical Delamination of CVD Graphene Films," Small, 11 [2] 189-94 (2015). https://doi.org/10.1002/smll.201402024
  51. D. Mafra, T. Ming, and J. Kong, "Facile Graphene Transfer Directly to Target Substrates with a Reusable Metal Catalyst," Nanoscale, 7 [36] 14807-12 (2015). https://doi.org/10.1039/C5NR03892H
  52. Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Q. Bao, J. Lu, and K. P. Loh, "Electrochemical Delamination of CVD-Grown Graphene Film: toward the Recyclable Use of Copper Catalyst," ACS Nano, 5 [12] 9927-33 (2011). https://doi.org/10.1021/nn203700w
  53. Y. Chen, X. L. Gong, and J. G. Gai, "Progress and Challenges in Transfer of Large-Area Graphene Films," Adv. Sci., 3 [8] 1500343 (2016). https://doi.org/10.1002/advs.201500343
  54. H. Terrones, R. Lv, M. Terrones, and M. S. Dresselhaus, "The Role of Defects and Doping in 2D Graphene Sheets and 1D Nanoribbons," Rep. Prog. Phys., 75 [6] 062501 (2012). https://doi.org/10.1088/0034-4885/75/6/062501
  55. R. Steingruber, M. Ferstl, and W. Pilz, "Micro-Optical Elements Fabricated by Electron-Beam Lithography and Dry Etching Technique Using Top Conductive Coatings," Microelectron. Eng., 57 285-89 (2001).
  56. T. Jiao, J. Liu, D. Wei, Y. Feng, X. Song, H. Shi, S. Jia, W. Sun, and C. Du, "Composite Transparent Electrode of Graphene Nanowalls and Silver Nanowires on Micropyramidal Si for High-Efficiency Schottky Junction Solar Cells," ACS Appl. Mater. Interfaces, 7 [36] 20179-83 (2015). https://doi.org/10.1021/acsami.5b05565
  57. X. Song, T. Sun, J. Yang, L. Yu, D. Wei, L. Fang, B. Lu, C. Du, and D. Wei, "Direct Growth of Graphene Films on 3D Grating Structural Quartz Substrates for High-Performance Pressure-Sensitive Sensors," ACS Appl. Mater. Interfaces, 8 [26] 16869-75 (2016). https://doi.org/10.1021/acsami.6b04526
  58. S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, "Highly Sensitive Flexible Pressure Sensors with Microstructured Rubber Dielectric Layers," Nat. Mater., 9 859-64 (2010). https://doi.org/10.1038/nmat2834
  59. H. Ago, Y. Ogawa, M. Tsuji, S. Mizuno, and H. Hibino, "Catalytic Growth of Graphene: Toward Large-Area Single-Crystalline Graphene," J. Phys. Chem. Lett., 3 [16] 2228-36 (2012). https://doi.org/10.1021/jz3007029
  60. X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, 324 [5932] 1312-14 (2009). https://doi.org/10.1126/science.1171245
  61. X. S. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, L. Colombo, and R. S. Ruoff, "Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper," J. Am. Chem. Soc., 133 [9] 2816-19 (2011). https://doi.org/10.1021/ja109793s
  62. X. C. Dong, P. Wang, W. J. Fang, C. Y. Su, Y. H. Chen, L. J. Li, W. Huang, and P. Chen, "Growth of Large-Sized Graphene Thin-Films by Liquid Precursor-Based Chemical Vapor Deposition under Atmospheric Pressure," Carbon, 49 [11] 3672-78 (2011). https://doi.org/10.1016/j.carbon.2011.04.069
  63. A. Guermoune, T. Chari, F. Popescu, S. S. Sabri, J. Guillemette, H. S. Skulason, T. Szkopek, and M. Siaj, "Chemical Vapor Deposition Synthesis of Graphene on Copper with Methanol, Ethanol, and Propanol Precursors," Carbon, 49 [13] 4204-10 (2011). https://doi.org/10.1016/j.carbon.2011.05.054
  64. A. Srivastava, C. Galande, L. Ci, L. Song, C. Rai, D. Jariwala, K. F. Kelly, and P. M. Ajayan, "Novel Liquid Precursor-Based Facile Synthesis of Large-Area Continuous, Single, and Few-Layer Graphene Films," Chem. Mater., 22 [11] 3457-61 (2010). https://doi.org/10.1021/cm101027c
  65. Y. G. Yao, Z. Li, Z. Y. Lin, K. S. Moon, J. Agar, and C. P. Wong, "Controlled Growth of Multilayer, Few-Layer, and Single-Layer Graphene on Metal Substrates," J. Phys. Chem. C, 115 [13] 5232-38 (2011). https://doi.org/10.1021/jp109002p
  66. Z. C. Li, P. Wu, C. X. Wang, X. D. Fan, W. H. Zhang, X. F. Zhai, C. G. Zeng, Z. Y. Li, J. L. Yang, and J. G. Hou, "Low-Temperature Growth of Graphene by Chemical Vapor Deposition Using Solid and Liquid Carbon Sources," ACS Nano, 5 [4] 3385-90 (2011). https://doi.org/10.1021/nn200854p
  67. M. H. Rummeli, A. Bachmatiuk, A. Scott, F. Borrnert, J. H. Warner, V. Hoffman, J.-H. Lin, G. Cuniberti, and B. Buchner, "Direct Low-Temperature Nanographene CVD Synthesis over a Dielectric Insulator," ACS Nano, 4 [7] 4206-10 (2010). https://doi.org/10.1021/nn100971s
  68. L. Zhang, Z. Shi, Y. Wang, R. Yang, D. Shi, and G. Zhang, "Catalyst-Free Growth of Nanographene Films on Various Substrates," Nano Res., 4 [3] 315-21 (2011). https://doi.org/10.1007/s12274-010-0086-5
  69. J. Chen, Y. Wen, Y. Guo, B. Wu, L. Huang, Y. Xue, D. Geng, D. Wang, G. Yu, and Y. Liu, "Oxygen-Aided Synthesis of Polycrystalline Graphene on Silicon Dioxide Substrates," J. Am. Chem. Soc., 133 [4] 17548-51 (2011). https://doi.org/10.1021/ja2063633
  70. H. J. Shin, W. M. Choi, S. M. Yoon, G. H. Han, Y. S. Woo, E. S. Kim, S. J. Chae, X. S. Li, A. Benayad, D. D. Loc, F. Gunes, Y. H. Lee, and J. Y. Choi, "Transfer-Free Growth of Few-Layer Graphene by Self-Assembled Monolayers," Adv. Mater., 23 [38] 4392-97 (2011). https://doi.org/10.1002/adma.201102526
  71. M. P. Levendorf, C. S. Ruiz-Vargas, S. Garg, and J. Park, "Transfer-Free Batch Fabrication of Single Layer Graphene Transistors," Nano Lett., 9 [12] 4479-83 (2009). https://doi.org/10.1021/nl902790r
  72. S.-J. Byun, H. Lim, G.-Y. Shin, T.-H. Han, S. H. Oh, J.-H. Ahn, H. C. Choi, and T.-W. Lee, "Graphenes Converted from Polymers," J. Phys. Chem. Lett., 2 [5] 493-97 (2011). https://doi.org/10.1021/jz200001g
  73. C. S. Lee, L. Baraton, Z. He, J.-L. Maurice, M. Chaigneau, D. Pribat, and C. S. Cojocaru, "Dual Graphene films growth process based on plasma-assisted chemical vapor deposition, in: SPIE NanoScience+ Engineering, International Society for Optics and Photonics, 2010, pp. 77610P-77610P-77617.
  74. X. Li, W. Cai, L. Colombo, and R. S. Ruoff, "Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling," Nano Lett., 9 [12] 4268-72 (2009). https://doi.org/10.1021/nl902515k
  75. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, "Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes," Nano Lett., 9 [12] 4359-63 (2009). https://doi.org/10.1021/nl902623y
  76. H. J. Song, M. Son, C. Park, H. Lim, M. P. Levendorf, A. W. Tsen, J. Park, and H. C. Choi, "Large Scale Metal-Free Synthesis of Graphene on Sapphire and Transfer-Free Device Fabrication," Nanoscale, 4 [10] 3050-54 (2012). https://doi.org/10.1039/c2nr30330b
  77. J. M. P. Alaboson, Q. H. Wang, J. D. Emery, A. L. Lipson, M. J. Bedzyk, J. W. Elam, M. J. Pellin, and M. C. Hersam, "Seeding Atomic Layer Deposition of High-k Dielectrics on Epitaxial Graphene with Organic Self-Assembled Monolayers," ACS Nano, 5 [6] 5223-32 (2011). https://doi.org/10.1021/nn201414d
  78. P.-Y. Teng, C.-C. Lu, K. Akiyama-Hasegawa, Y.-C. Lin, C.-H. Yeh, K. Suenaga, and P.-W. Chiu, "Remote Catalyzation for Direct Formation of Graphene Layers on Oxides," Nano Lett., 12 [3] 1379-84 (2012). https://doi.org/10.1021/nl204024k
  79. J. Kang, D. Shin, S. Bae, and B. H. Hong, "Graphene Transfer: Key for Applications," Nanoscale, 4 [18] 5527-37 (2012). https://doi.org/10.1039/c2nr31317k
  80. Y.-J. Kim, S. J. Kim, M. H. Jung, K. Y. Choi, S. Bae, S.-K. Lee, Y. Lee, D. Shin, B. Lee, H. Shin, M. Choi, K. Park, J- H Ahn, and B. H. Hong, "Low-Temperature Growth and Direct Transfer of Graphene-Graphitic Carbon Films on Flexible Plastic Substrates," Nanotechnology, 23 [34] 344016 (2012). https://doi.org/10.1088/0957-4484/23/34/344016
  81. H.-K. Seo, K. Kim, S.-Y. Min, Y. Lee, C. E. Park, R. Raj, and T.-W. Lee, "Direct Growth of Graphene-Dielectric Bi-Layer Structure on Device Substrates from Si-Based Polymer," 2D Mater., 4 [2] 024001 (2017). https://doi.org/10.1088/2053-1583/aa5408
  82. J. Yamada, Y. Ueda, T. Maruyama, and S. Naritsuka, "Direct Growth of Multilayer Graphene by Precipitation Using W Capping Layer," Jpn. J. Appl. Phys., 55 [10] 100302 (2016). https://doi.org/10.7567/JJAP.55.100302
  83. C.-Y. Su, A.-Y. Lu, C.-Y. Wu, Y.-T. Li, K.-K. Liu, W. Zhang, S.-Y. Lin, Z.-Y. Juang, Y.-L. Zhong, and F.-R. Chen, "Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition," Nano Lett., 11 [9] 3612-16 (2011). https://doi.org/10.1021/nl201362n
  84. Z. Peng, Z. Yan, Z. Sun, and J. M. Tour, "Direct Growth of Bilayer Graphene on SiO2 Substrates by Carbon Diffusion through Nickel," ACS Nano, 5 [10] 8241-47 (2011). https://doi.org/10.1021/nn202923y
  85. M. Min, S. Seo, Y. Yoon, K. Cho, S. M. Lee, T. Lee, and H. Lee, "Catalyst-Free Bottom-Up Growth of Graphene Nanofeatures along with Molecular Templates on Dielectric Substrates," Nanoscale, 8 [38] 17022-29 (2016). https://doi.org/10.1039/C6NR05657A
  86. Z. Liu, L. Song, S. Zhao, J. Huang, L. Ma, J. Zhang, J. Lou, and P. M. Ajayan, "Direct Growth of Graphene/Hexagonal Boron Nitride Stacked Layers," Nano Lett., 11 [5] 2032-37 (2011). https://doi.org/10.1021/nl200464j
  87. P. Thanh Trung, J. Campos-Delgado, F. Joucken, J.-F. Colomer, B. Hackens, J.-P. Raskin, C. N. Santos, and S. Robert, "Direct Growth of Graphene on Si (111)," J. Appl. Phys., 115 [22] 223704 (2014). https://doi.org/10.1063/1.4882181
  88. S. C. Xu, B. Y. Man, S. Z. Jiang, C. S. Chen, C. Yang, M. Liu, X. G. Gao, Z. C. Sun, and C. Zhang, "Direct Synthesis of Graphene on $SiO_2$ Substrates by Chemical Vapor Deposition," CrystEngComm, 15 [10] 1840-44 (2013). https://doi.org/10.1039/c3ce27029g
  89. J. Kwak, J. H. Chu, J.-K. Choi, S.-D. Park, H. Go, S. Y. Kim, K. Park, S.-D. Kim, Y.-W. Kim, and E. Yoon, "Near Room-Temperature Synthesis of Transfer-Free Graphene Films," Nat. Commun., 3 645 (2012). https://doi.org/10.1038/ncomms1650
  90. H. Bi, S. Sun, F. Huang, X. Xie, and M. Jiang, "Direct Growth of Few-Layer Graphene Films on $SiO_2$ Substrates and Their Photovoltaic Applications," J. Mater. Chem., 22 [2] 411-16 (2012). https://doi.org/10.1039/C1JM14778A
  91. H. Kim, I. Song, C. Park, M. Son, M. Hong, Y. Kim, J. S. Kim, H.-J. Shin, J. Baik, and H. C. Choi, "Copper-Vapor-Assisted Chemical Vapor Deposition for High-Quality and Metal-Free Single-Layer Graphene on Amorphous $SiO_2$ Substrate," ACS Nano, 7 [8] 6575-82 (2013). https://doi.org/10.1021/nn402847w
  92. J. Li, C. Shen, Y. Que, Y. Tian, L. Jiang, D. Bao, Y. Wang, S. Du, and H.-J. Gao, "Copper Vapor-Assisted Growth of Hexagonal Graphene Domains on Silica Islands," Appl. Phys. Lett., 109 [2] 023106 (2016). https://doi.org/10.1063/1.4958872
  93. S. Tang, H. Wang, H. S. Wang, Q. Sun, X. Zhang, C. Cong, H. Xie, X. Liu, X. Zhou, and F. Huang, "Silane-Catalysed Fast Growth of Large Single-Crystalline Graphene on Hexagonal Boron Nitride," Nat. Commun., 6 6499 (2015). https://doi.org/10.1038/ncomms7499
  94. G. Yang, H.-Y. Kim, S. Jang, and J. Kim, "Transfer-Free Growth of Multilayer Graphene Using Self-Assembled Monolayers," ACS Appl. Mater. Interfaces, 8 [40] 27115-21 (2016). https://doi.org/10.1021/acsami.6b08974
  95. H. Wang, Y. Zhou, D. Wu, L. Liao, S. L. Zhao, H. L. Peng, and Z. F. Liu, "Synthesis of Boron-Doped Graphene Monolayers Using the Sole Solid Feedstock by Chemical Vapor Deposition," Small, 9 [8] 1316-20 (2013). https://doi.org/10.1002/smll.201203021
  96. R. Mehta, S. Chugh, and Z. Chen, "Transfer-Free Multi-Layer Graphene as a Diffusion Barrier," Nanoscale, 9 [5] 1827-33 (2017). https://doi.org/10.1039/C6NR07637H
  97. R. Munoz, C. Munuera, J. Martínez, J. Azpeitia, C. Gomez-Aleixandre, and M. Garcia-Hernandez, "Low Temperature Metal Free Growth of Graphene on Insulating Substrates by Plasma Assisted Chemical Vapor Deposition," 2D Mater., 4 015009 (2016). https://doi.org/10.1088/2053-1583/4/1/015009
  98. J. Pang, R. G. Mendes, P. S. Wrobel, M. D. Wlodarski, H. Q. Ta, L. Zhao, L. Giebeler, B. Trzebicka, T. Gemming, and L. Fu, "A Self Terminating Confinement Approach for Large Area Uniform Monolayer Graphene Directly over $Si/SiO_x$ by Chemical Vapor Deposition," ACS Nano, 11 [2] 1946-56 (2017). https://doi.org/10.1021/acsnano.6b08069
  99. J. Sun, Y. Chen, M. K. Priydarshi, Z. Chen, A. Bachmatiuk, Z. Zou, Z. Chen, X. Song, Y. Gao, and M. H. Ruummeli, "Direct Chemical Vapor Deposition-Derived Graphene Glasses Targeting Wide Ranged Applications," Nano Lett., 15 [9] 5846-54 (2015). https://doi.org/10.1021/acs.nanolett.5b01936
  100. J.-H. Lee, M.-S. Kim, J.-Y. Lim, S.-H. Jung, S.-G. Kang, H.-J. Shin, J.-Y. Choi, S.-W. Hwang, and D. Whang, "CMOS-Compatible Catalytic Growth of Graphene on a Silicon Dioxide Substrate," Appl. Phys. Lett., 109 [5] 053102 (2016). https://doi.org/10.1063/1.4960293
  101. A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, J. Bokor, and Y. Zhang, "Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces," Nano Lett., 10 [5] 1542-48 (2010). https://doi.org/10.1021/nl9037714
  102. J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and B. J. LeRoy, "Scanning Tunnelling Microscopy and Spectroscopy of Ultra-Flat Graphene on Hexagonal Boron Nitride," Nat. Mater., 10 282-85 (2011). https://doi.org/10.1038/nmat2968
  103. T. Q. Trung and N.-E. Lee, "Materials and Devices for Transparent Stretchable Electronics," J. Mater. Chem. C, 5 [9] 2202-22 (2017). https://doi.org/10.1039/C6TC05346G
  104. T. Q. Trung and N. E. Lee, "Recent Progress on Stretchable Electronic Devices with Intrinsically Stretchable Components," Adv. Mater., 29 [3] 1603167 (2017). https://doi.org/10.1002/adma.201603167
  105. M. Son, H. Lim, M. Hong, and H. C. Choi, "Direct Growth of Graphene Pad on Exfoliated Hexagonal Boron Nitride Surface," Nanoscale, 3 [8] 3089-93 (2011). https://doi.org/10.1039/c1nr10504c
  106. Q. K. Yu, L.A. Jauregui, W. Wu, R. Colby, J. F. Tian, Z. H. Su, H. L. Cao, Z. H. Liu, D. Pandey, D. G. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. M. Bao, S. S. Pei, and Y. P. Chen, "Control and Characterization of Individual Grains and Grain Boundaries in Graphene Grown by Chemical Vapour Deposition," Nat. Mater., 10 443-49 (2011). https://doi.org/10.1038/nmat3010
  107. B. Zhang, W. H. Lee, R. Piner, I. Kholmanov, Y. P. Wu, H. F. Li, H. X. Ji, and R. S. Ruoff, "Low-Temperature Chemical Vapor Deposition Growth of Graphene from Toluene on Electropolished Copper Foils," ACS Nano, 6 [3] 2471-76 (2012). https://doi.org/10.1021/nn204827h
  108. J. Jang, M. Son, S. Chung, K. Kim, C. Cho, B. H. Lee, and M. H. Ham, "Low-Temperature-Grown Continuous Graphene Films from Benzene by Chemical Vapor Deposition at Ambient Pressure," Sci. Rep., 5 17955 (2015).
  109. L. Jiang, T. C. Niu, X. Q. Lu, H. L. Dong, W. Chen, Y. Q. Liu, W. P. Hu, and D. B. Zhu, "Low-Temperature, Bottom-Up Synthesis of Graphene via a Radical-Coupling Reaction," J. Am. Chem. Soc., 135 [24] 9050-54 (2013). https://doi.org/10.1021/ja4031825
  110. Y. Z. Chen, H. Medina, H. W. Tsai, Y. C. Wang, Y. T. Yen, A. Manikandan, and Y. L. Chueh, "Low Temperature Growth of Graphene on Glass by Carbon-Enclosed Chemical Vapor Deposition Process and Its Application as Transparent Electrode," Chem. Mater., 27 [5] 1646-55 (2015). https://doi.org/10.1021/cm504431d
  111. J. H. Choi, Z. C. Li, P. Cui, X. D. Fan, H. Zhang, C. G. Zeng, and Z. Y. Zhang, "Drastic Reduction in the Growth Temperature of Graphene on Copper via Enhanced London Dispersion Force," Sci. Rep., 3 1925 (2013). https://doi.org/10.1038/srep01925
  112. J. Zhang, J. J. Li, Z. L. Wang, X. N. Wang, W. Feng, W. Zheng, W. W. Cao, and P. A. Hu, "Low-Temperature Growth of Large-Area Heteroatom-Doped Graphene Film," Chem. Mater., 26 [7] 2460-66 (2014). https://doi.org/10.1021/cm500086j
  113. X. Wan, K. Chen, D. Q. Liu, J. Chen, Q. Miao, and J. B. Xu, "High-Quality Large-Area Graphene from Dehydrogenated Polycyclic Aromatic Hydrocarbons," Chem. Mater., 24 [20] 3906-15 (2012). https://doi.org/10.1021/cm301993z
  114. E. Lee, H. C. Lee, S. B. Jo, H. Lee, N. S. Lee, C. G. Park, S. K. Lee, H. H. Kim, H. Bong, and K. Cho, "Heterogeneous Solid Carbon Source-Assisted Growth of High-Quality Graphene via CVD at Low Temperatures," Adv. Funct. Mater., 26 [4] 562-68 (2016). https://doi.org/10.1002/adfm.201504194
  115. M. M. Zhu, Z. H. Du, Z. Y. Yin, W. W. Zhou, Z. D. Liu, S. H. Tsang, and E. H. T. Teo, "Low-Temperature in Situ Growth of Graphene on Metallic Substrates and Its Application in Anticorrosion," ACS Appl. Mater. Interfaces, 8 [1] 502-10 (2016). https://doi.org/10.1021/acsami.5b09453
  116. K. Gharagozloo-Hubmann, N. S. Muller, M. Giersig, C. Lotze, K. J. Franke, and S. Reicht, "Requirement on Aromatic Precursor for Graphene Formation," J. Phys. Chem. C, 120 [18] 9821-25 (2016). https://doi.org/10.1021/acs.jpcc.6b01781
  117. M. Marschall, J. Reichert, K. Seufert, W. Auwarter, F. Klappenberger, A. Weber-Bargioni, S. Klyatskaya, G. Zoppellaro, A. Nefedov, T. Strunskus, C. Woll, M. Ruben, and J. V. Barth, "Supramolecular Organization and Chiral Resolution of p-Terphenyl-m-Dicarbonitrile on the Ag(111) Surface," Chemphyschem, 11 [7] 1446-51 (2010). https://doi.org/10.1002/cphc.200900938
  118. R. Addou, A. Dahal, P. Sutter, and M. Batzill, "Monolayer Graphene Growth on Ni(111) by Low Temperature Chemical Vapor Deposition," Appl. Phys. Lett., 100 [2] 021601 (2012). https://doi.org/10.1063/1.3675481
  119. C. Klink, I. Stensgaard, F. Besenbacher, and E. Laegsgaard, "An Stm Study of Carbon-Induced Structures on Ni(111) - Evidence for a Carbidic-Phase Clock Reconstruction," Surf. Sci., 342 [1-3] 250-60 (1995). https://doi.org/10.1016/0039-6028(95)00697-4
  120. J. Lahiri, T. Miller, L. Adamska, I. I. Oleynik, and M. Batzill, "Graphene Growth on Ni(111) by Transformation of a Surface Carbide," Nano Lett., 11 [2] 518-22 (2011). https://doi.org/10.1021/nl103383b
  121. L. L. Patera, C. Africh, R. S. Weatherup, R. Blume, S. Bhardwaj, C. Castellarin-Cudia, A. Knop-Gericke, R. Schloegl, G. Comelli, S. Hofmann, and C. Cepek, "In Situ Observations of the Atomistic Mechanisms of Ni Catalyzed Low Temperature Graphene Growth," ACS Nano, 7 [9] 7901-12 (2013). https://doi.org/10.1021/nn402927q
  122. S. Zhou, J. L. Xu, Y. B. Xiao, N. Zhao, and C. P. Wong, "Low-Temperature Ni Particle-Templated Chemical Vapor Deposition Growth of Curved Graphene for Supercapacitor Applications," Nano Energy, 13 458-66 (2015). https://doi.org/10.1016/j.nanoen.2015.03.010

Cited by

  1. Energy of low-temperature synthesis of graphen-like carbon nanocomposites on porous silicon (Review) vol.1696, pp.None, 2018, https://doi.org/10.1088/1742-6596/1696/1/012025
  2. Porous Silicon Skeleton as Catalysts for Hydrocarbon Decomposition at Low Temperature Synthesis of Graphene Nanocomposites vol.10, pp.1, 2018, https://doi.org/10.1149/2162-8777/abdd86
  3. Measurement Technique for High Thermal Conductivity Nanomaterials vol.24, pp.1, 2021, https://doi.org/10.31613/ceramist.2021.24.1.07