DOI QR코드

DOI QR Code

Structural Characterization and Dielectric Studies of Superparamagnetic Iron Oxide Nanoparticles

  • Sivakumar, D. (Department of Physics, Sree Krishna College of Engineering) ;
  • Naidu, K. Chandra Babu (Department of Humanities and Sciences, Srinivasa Ramanujan Institute of Technology) ;
  • Nazeer, K. Prem (PG & Research Department of Physics, Islamiah college) ;
  • Rafi, M. Mohamed (PG & Research Department of Physics, Islamiah college) ;
  • kumar, G. Ramesh (Department of Physics, University College of Engineering-Arni) ;
  • Sathyaseelan, B. (Department of Physics, University College of Engineering-Arni) ;
  • Killivalavan, G. (Department of Physics, University College of Engineering-Arni) ;
  • Begam, A. Ayisha (Department of Physics, Avinashilingam Institute for Home Science and Higher Education)
  • Received : 2017.12.03
  • Accepted : 2018.03.19
  • Published : 2018.05.31

Abstract

Superparamagnetic iron oxide nanoparticles (SPIONs) have been prepared without using surfactants to assess their stability at different time intervals. The synthesized particles were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, ultraviolet-visible-near infrared spectroscopy, and energy dispersive spectroscopy. Field emission scanning electron microscopy and high-resolution transmission electron microscopy images of the samples were also investigated. The average particle size was measured to be 12.7 nm even in the polydispersed form. The magnetic and dielectric characteristics of the $Fe_3O_4$ nanoparticles have also been studied and discussed in detail.

Keywords

References

  1. A. Bandhu, S. Mukherjee, S. Acharya, S. Modak, S. K. Brahma, D. Das, and P. K. Chakrabarti, "Dynamic Magnetic Behaviour and Mossbauer Effect Measurements of Magnetite Nanoparticles Prepared by a New Technique in the Co-Precipitation Method," Solid State Commun., 149 [41-42] 1790-94 (2009). https://doi.org/10.1016/j.ssc.2009.07.018
  2. O. U. Rahman, S. C. Mohapatra, and S. Ahmad, "$Fe_3O_4$ Inverse Spinal Super Paramagnetic Nanoparticles," Mater. Chem. Phys., 132 [1] 196-202 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.032
  3. Y. Zhan, F. Meng, X. Yang, R. Zhao, and X. Liu, "Solvothermal Synthesis and Characterization of Functionalized Graphene Sheets (FGSs)/Magnetite Hybrids," Mater. Sci. Eng., B, 176 [16] 1333-39 (2011). https://doi.org/10.1016/j.mseb.2011.07.023
  4. J. B. Mamani, L. F. Gamarra, and G. E. Brito, "Synthesis and Characterization of $Fe_3O_4$ Nanoparticles with Perspectives in Biomedical Applications," Mater. Res., 17 [3] 542-49 (2014). https://doi.org/10.1590/S1516-14392014005000050
  5. K. C. Kim, E. K. Kim, J. W. Lee, S. L. Maeng, and Y. S. Kim, "Synthesis and Characterization of Magnetite Nanopowders," Curr. Appl. Phys., 8 [6] 758-60 (2008). https://doi.org/10.1016/j.cap.2007.04.021
  6. M. Li and X. Sui, "Synthesis and Characterization of Magnetite Particles by Co-Precipitation Method," Key Eng. Mater., 512 82-5 (2012).
  7. H. Holland and M. Yamaura,"Synthesis of Magnetite Nanoparticles by Microwave irradiation and Characterization"; in Proceedings of the Seventh international Latin Conference on Powder Technology, 2009.
  8. T. Sulistyaningsih, S. J. Santosa, D. Siswanta, and B. Rusdiarso, "Synthesis and Characterization of Magnetites Obtained from Mechanically and Sonochemically Assisted Co-precipitation and Reverse Co-precipitation Methods," Int. J. Mater., Mech. Manuf., 5 [1] 16-9 (2017).
  9. S. Shaker, S. Zafarian, S. Chakra, K. V. Rao, K. Badii, A. Aftabtalab, and H. Sadabadi, "Fabrication of Super Paramagnetic Nanoparticles by Sol-Gel Method for Water Purification," Adv. Mater. Res., 829 808-12 (2013). https://doi.org/10.4028/www.scientific.net/AMR.829.808
  10. H. Ardiyanti, E. Suharyadi, T. Kato, and S. Iwata, "Crystal Structures and Magnetic Properties of Magnetite ($Fe_3O_4$)/Polyvinyl Alcohol (PVA) Ribbon," AIP Conf. Proc., 1725 [1] 020007 (2016).
  11. T. W. Herrera, A. G. Bustamant Dominguez, E. Baggio Saitovitch, and J. Litterst, "Synthesis and Characterization of Magnetite Nanoparticles Functionalized with Carboxyl and Amino Acids for Biomedical Applications"; pp. 14-5 in Proceeding of the Nano Conference, Brno, Czech Republic, 2015.
  12. T. Biswal, B. Barik, and P. K. Sahoo "Synthesis and Characterization of Magnetite-Pectin-Alginate Hybrid Bionanocomposite," J. Mater. Sci. Nanotechnol., 4 [2] 203 (2016).
  13. J. Ibarra, J. Melendres, M. Almada, M. G. Burboa, P. Taboada, J. Juarez, and M. A. Valdez, "Synthesis and Characterization of Magnetite/PLGA/Chitosan Nanoparticles," Mater. Res. Express, 2 [9] 095010 (2015). https://doi.org/10.1088/2053-1591/2/9/095010
  14. A. Oberle and K. Ludtke-Buzug, "Stability Analysis of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) at $37^{\circ}C$," Biomed Tech., 58 [1] 4099 (2013).
  15. V. K. Garg, E. Kuzmann, V. K. Sharma, Arun Kumar, and A. C. Oliveiral, "Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for Targeted Drug Delivery," AIP Conf. Proc., 1781 [1] 020009 (2016).
  16. H. N. Husni, N. Mahmed, and H. L. Ngee, "Synthesis and Characterization of $Fe_3O_4$-$SiO_2$-AgCl Photocatalyst," AIP Conf. Proc., 1756 [1] 090001 (2016).
  17. O. Karaagac and H. Konckar, "A Simple Way to Obtain High Saturation Magnetization for Superparmagnetic Iron Oxide Nanoparticles Synthesized in Air Atmosphere Optimization by Experimental Design," J. Magn. Magn. Mater., 409 116-23 (2016). https://doi.org/10.1016/j.jmmm.2016.02.076
  18. K. Petcharoen and A. Sirivat, "Synthesis and Characterization of Magnetite Nanoparticles via the Chemical Co-Precipitation Method," Mater. Sci. Eng., B, 177 [5] 421-27 (2012). https://doi.org/10.1016/j.mseb.2012.01.003
  19. H. A. Eivari, A. Rahdar, and H. Arabi, "Preparation of Super Paramagnetic Iron Oxide Nanoparticles and Investigation their Magnetic Properties," Int. J. Sci. Eng. Invest., 1 [3] 70-2 (2012).
  20. M. Zarghani and B. Akhlaghinia, "Magnetically Separable $Fe_3O_4$@chitin as an Eco-Friendly Nanocatalyst with High Efficiency for Green Synthesis of 5-Substituted-1H-Tetrazoles under Solvent-Free Conditions," RSC Adv., 6 [38] 31850-60 (2016). https://doi.org/10.1039/C6RA07252F
  21. B. K. Sodipo and A. Abdul Aziz, "Blocking Properties of Superparamagnetic Magnetite Nanoparticles and Gold/Superparamagnetic Magnetite Composite Nanoparticles," Adv. Mater. Res., 1108 15-20 (2015). https://doi.org/10.4028/www.scientific.net/AMR.1108.15
  22. L. Wang, K. Gan, D. Lu, and J. Zhang, "Hydrophilic $Fe_3O_4$@C for High-Capacity Adsorption of 2,4-Dichlorophenol," Eur. J. Inorg. Chem., 6 890-96 (2016).
  23. J. Murbe, A. Rechtenbach, and J. Topfer, "Synthesis and Physical Characterization of Magnetite Nanoparticles for Biomedical Applications," Mater. Chem. Phys., 110 [2-3] 426-33 (2008). https://doi.org/10.1016/j.matchemphys.2008.02.037
  24. S. Gil, E. Castro, and J. F. Mano, "Synthesis and Characterization of Stable Dicarboxylic Pegylated Magnetite Nanoparticles," Mater. Lett., 100 266-70 (2013). https://doi.org/10.1016/j.matlet.2013.03.058
  25. M. Morel, F. Martínez, and E. Mosquera, "Synthesis and Characterization of Magnetite Nanoparticles from Mineral Magnetite," J. Magn. Magn. Mater., 343 76-81 (2013). https://doi.org/10.1016/j.jmmm.2013.04.075
  26. R. Chen, J. Cheng, and Y. Wei, "Preparation and Magnetic Properties of $Fe_3O_4$ Microparticles with Adjustable Size and Morphology," J. Alloys Compd., 520 266-71 (2012). https://doi.org/10.1016/j.jallcom.2012.01.039
  27. J. Wang, J. Sun, Q. Sun, and Q. Chen, "One-Step Hydrothermal Process to Prepare Highly Crystalline $Fe_3O_4$ Nanoparticles with Improved Magnetic Properties," Mater. Res. Bull., 38 [7] 1113-18 (2003). https://doi.org/10.1016/S0025-5408(03)00129-6
  28. R. Yuvakkumar and S. I. Hong, "Green Synthesis of Spinel Magnetite Iron Oxide Nanoparticles," Adv. Mater. Res., 1051 39-42 (2014). https://doi.org/10.4028/www.scientific.net/AMR.1051.39
  29. A. Mohammadi and M. Barikani, "Synthesis and Characterization of Superparamagnetic $Fe_3O_4$Nanoparticles Coated with Thiodiglycol," Mater. Charact., 90 88-93 (2014). https://doi.org/10.1016/j.matchar.2014.01.021
  30. A. Demir, R. Topkaya, and A Baykal, "Green Synthesis of Superparamagnetic $Fe_3O_4$ Nanoparticles with Maltose: its Magnetic Investigation," Polyhedron, 65 282-87 (2013). https://doi.org/10.1016/j.poly.2013.08.041
  31. F. Fajaroh, H. Setyawan, W. Widiyastuti, and S. Winardi, "Synthesis of Magnetite Nanoparticles by Surfactant-free Electrochemical Method in an Aqueous System," Adv. Powder Technol., 23 [3] 328-33 (2011). https://doi.org/10.1016/j.apt.2011.04.007
  32. W. Lu, Y. Shen, A. Xie, and W. Zhang, "Green Synthesis and Characterization of Superparamagnetic $Fe_3O_4$ Nanoparticles," J. Magn. Magn. Mater., 322 [13] 1828-33 (2010). https://doi.org/10.1016/j.jmmm.2009.12.035
  33. H. Deligoz, A. Baykal, M. Senel, H. Sozeri, E. Karaoglu, and M. S. Toprak, "Synthesis and Characterization of Poly(1-vinyltriazole)-Grafted Superparamagnetic Iron Oxide Nanoparticles," Synth. Met., 162 [7-8] 590-97 (2012). https://doi.org/10.1016/j.synthmet.2012.02.005
  34. A. Manohar and C. Krishnamoorthi, "Low Curie-Transi- tion Temperature and Superparamagnetic Nature of $Fe_3O_4$ Nanoparticles Prepared by Colloidal Nanocrystal Synthesis," Mater. Chem. Phys., 192 235-43 (2017). https://doi.org/10.1016/j.matchemphys.2017.01.039
  35. A. M. Yashchenok, D. A. Gorin, M. Badylevich, A. A. Serdobintsev, M. Bedard, Y. G. Fedorenko, G. B. Khomutov, D. O. Grigoriev, and H. Mohwald, "Impact of Magnetite Nanoparticle Incorporation on Optical and Electrical Properties of Nanocomposite LbL Assemblies," Phys. Chem. Chem. Phys., 12 [35] 10469-75 (2010). https://doi.org/10.1039/c004242k
  36. M. B. Sahana, C. Subakar, G. Setzler, A Dixit, J. S. Thakur, G. Lawes, R. Naik, V. M. Naik, and P. P. Vaishnava, "Bandgap Engineering by Tuning Particle Size and Crystallinity of $SnO_2-Fe_3O_4$ Nanocrystalline Composite Thin Films," Appl. Phys. Lett., 93 [23] 231909 (2008). https://doi.org/10.1063/1.3042163
  37. K. C. Kim, E. K. Kim, J. W. Lee, S. L. Maeng, and Y. S. Kim, "Synthesis and Characterization of Magnetite Nanopowders," Curr. Appl. Phys., 8 [6] 758-60 (2008). https://doi.org/10.1016/j.cap.2007.04.021
  38. D. K. Jha, M. Shameem, A. B. Patel, A. Kostka, P. Schneider, A. Erbe, and P. Deb, "Simple Synthesis of Superparamagnetic Magnetite Nanoparticles as Highly Efficient Contrast Agent," Mater. Lett., 95 186-89 (2013). https://doi.org/10.1016/j.matlet.2012.12.096
  39. M. E. Compean-Jasso, F. Ruiz, J. R. Martinez, and A. Herrera-Gomez, "Magnetic Properties of Magnetite Nanoparticles Synthesized by Forced Hydrolysis," Mater. Lett., 62 [27] 4248-50 (2008). https://doi.org/10.1016/j.matlet.2008.06.053
  40. H. Maleki, A. Simchi, M. Imani, and B. F. O. Costa, "Size-Controlled Synthesis of Superparamagnetic Iron Oxide Nanoparticles and their Surface Coating by Gold for Biomedical Applications," J. Magn. Magn. Mater., 324 [23] 3997-4005 (2012). https://doi.org/10.1016/j.jmmm.2012.06.045
  41. I. Martiinez-Mera, M. E. Espinosa-Pesqueira, R. Perez-Hernandez, and J. Arenas-Alatorre, "Synthesis of Magnetite ($Fe_3O_4$) Nanoparticles without Surfactants at Room Temperature," Mater. Lett., 61 [23-24] 4447-51 (2007). https://doi.org/10.1016/j.matlet.2007.02.018
  42. O. M. Lemine, K. Omri, B. Zhang, L. E. Mir, M. Sajieddine, A. Alyamani, and M. Bououdina, "Sol-Gel Synthesis of 8 nm Magnetite ($Fe_3O_4$) Nanoparticles and their Magnetic Properties," Superlattices Microstruct., 52 [4] 793-99 (2012). https://doi.org/10.1016/j.spmi.2012.07.009
  43. A. Priprem, P. Mahakunakorn, C. Thomas, and I. Thomas, "Cytotoxicity Studies of Superparamagnetic Iron Oxide Nanoparticles in Macrophage and Liver Cells," Curr. Res. Nanotechnol., 1 [2] 78-85 (2010). https://doi.org/10.3844/ajnsp.2010.78.85
  44. S. Xuan, Y.-X. J. Wang, J. C. Yu, and K. C.-F. Leung, "Tuning the Grain Size and Particle Size of Superpara- magnetic $Fe_3O_4$Microparticles," Chem. Mater., 21 [21] 5079-87 (2009). https://doi.org/10.1021/cm901618m
  45. V. Kumar, R. P. Singh, S. Kumar, A. Agarwal, and P. Singh, "Particle Size Determination and Magnetic Characterization of $Fe_3O_4$ Nanoparticles Using Superconducting Quantum Interference Device Magnetometry," Sens. Mater., 28 [3] 191-99 (2016).
  46. L. Zhuang, W. Zhang, Y. Zhao, H. Shen, H. Lin, and J. Liang, "Preparation and Characterization of $Fe_3O_4$ Particles with Novel Nanosheets Morphology and Magnetochromatic Property by a Modified Solvothermal Method," Sci. Rep., 5 9320 (2015). https://doi.org/10.1038/srep09320
  47. K. V. P. M. Shafi and A. Gedanken, "Sonochemical Preparation and Size-Dependent Properties of Nanostructured $CoFe_2O_4$ Particles," Chem. Mater., 10 [11] 3445-50 (1998). https://doi.org/10.1021/cm980182k
  48. R. C. Buchanan, Ceramic Materials for Electronics; Third Edition, Marcel Dekker, New York, 2004.
  49. M. Srivastava, J. Singh, R. K. Mishra, M. K. Singh, A. K. Ojha, M. Yashpal, and S. Sudhanshu, "Novel Conducting Lithium Ferrite/Chitosan Nanocomposite Synthesis, Characterization, Magnetic and Dielectric Properties," Curr. Appl. Phys., 14 [7] 980-90 (2014). https://doi.org/10.1016/j.cap.2014.04.013
  50. S. Joshi, M. Kumar, S. Chhoker, G. Srivastava, M. Jew- ariya, and V. N. Singh, "Structural, Magnetic, Dielectric and Optical Properties of Nickel Ferrite Nanoparticles Synthesized by Co-Precipitation Method," J. Mol. Struct., 1076 55-62 (2014). https://doi.org/10.1016/j.molstruc.2014.07.048
  51. N. Parasad, G. Prasad, M. Kumar, S. Suryanaryana, T. Bhimasankaram, and G. Kumar, "Effect of HIPing on Conductivity and Impedance Measurements of $DyBi_5Fe_2-Ti_3O_{18}$ Ceramics," Bull. Mater. Sci., 23 [6] 483-89 (2000). https://doi.org/10.1007/BF02903888
  52. E. Huseynov, A. Garibov, and R. Mehdiyeva, "Temperature and Frequency Dependence of Electric Conductivity in Nano-Grained $SiO_2$ Exposed to Neutron Irradiation," Phys. B, 450 77-83 (2014). https://doi.org/10.1016/j.physb.2014.05.063
  53. R. M. Hill and L. A. Dissado, "Debye and Non-Debye Relaxation," J. Phys. C: Solid State Phys., 18 [19] 3829 (1985). https://doi.org/10.1088/0022-3719/18/19/021
  54. B. Behera, P. Nayak, and R. Choudhary, "Impedance Spectroscopy Study of $NaBa_2V_5O_{15}$ Ceramic," J. Alloys Compd., 436 [1-2] 226-32 (2007). https://doi.org/10.1016/j.jallcom.2006.07.028

Cited by

  1. Optical and electronic properties of copper and cobalt substituted nano SrBaFe12O19 synthesized by sol-gel autocombustion method vol.125, pp.5, 2018, https://doi.org/10.1007/s00339-019-2618-5
  2. Optical bandgap and ferroelectric studies of Pb0.8−yLayCo0.2TiO3 (y = 0.2 to 0.8) synthesized by microwave irradiation processed sol-gel technique vol.10, pp.3, 2018, https://doi.org/10.1088/2043-6254/ab3bc9
  3. Magnetic and antimicrobial properties of cobalt‐zinc ferrite nanoparticles synthesized by citrate‐gel method vol.16, pp.5, 2018, https://doi.org/10.1111/ijac.13276
  4. Ecofriendly synthesis, crystal chemistry, electrical, and low-temperature magnetic properties of nano-particles (Li-Cr) for drug delivery and MRI applications vol.32, pp.2, 2018, https://doi.org/10.1007/s10854-020-04908-0
  5. Superiority of activated graphite/CuO composite electrode over Platinum based electrodes as cathode in algae assisted microbial fuel cell vol.24, pp.None, 2021, https://doi.org/10.1016/j.eti.2021.101891
  6. Effect of temperature on the dielectric and magnetic properties of NiFe2O4@MgFe2O4 and ZnFe2O4@MgFe2O4 core-shel vol.96, pp.12, 2018, https://doi.org/10.1088/1402-4896/ac2087