DOI QR코드

DOI QR Code

Full Parametric Impedance Analysis of Photoelectrochemical Cells: Case of a TiO2 Photoanode

  • Nguyen, Hung Tai (School of Materials Science and Engineering, Chonnam National University) ;
  • Tran, Thi Lan (School of Materials Science and Engineering, Chonnam National University) ;
  • Nguyen, Dang Thanh (School of Materials Science and Engineering, Chonnam National University) ;
  • Shin, Eui-Chol (School of Materials Science and Engineering, Chonnam National University) ;
  • Kang, Soon-Hyung (Department of Chemistry Education, Chonnam National University) ;
  • Lee, Jong-Sook (School of Materials Science and Engineering, Chonnam National University)
  • Received : 2018.01.10
  • Accepted : 2018.05.09
  • Published : 2018.05.31

Abstract

Issues in the electrical characterization of semiconducting photoanodes in a photoelectrochemical (PEC) cell, such as the cell geometry dependence, scan rate dependence in DC measurements, and the frequency dependence in AC measurements, are addressed, using the example of a $TiO_2$ photoanode. Contrary to conventional constant phase element (CPE) modeling, the capacitive behavior associated with Mott-Schottky (MS) response was successfully modeled by a Havriliak-Negami (HN) capacitance function-which allowed the determination of frequency-independent Schottky capacitance parameters to be explained by a trapping mechanism. Additional polarization can be successfully described by the parallel connection of a Bisquert transmission line (TL) model for the diffusion-recombination process in the nanostructured $TiO_2$ electrode. Instead of shunt CPEs generally employed for the non-ideal TL feature, TL models with ideal shunt capacitors can describe the experimental data in the presence of an infinite-length Warburg element as internal interfacial impedance - a characteristic suggested to be a generic feature of many electrochemical cells. Fully parametrized impedance spectra finally allow in-depth physicochemical interpretations.

Keywords

References

  1. H. S. Kim, D. T. Nguyen, E.-C. Shin, J.-S. Lee, S. K. Lee, K.-S. Ahn, and S. H. Kang, "Bifunctional Doping Effect on the $TiO_2$ Nanowires for Photoelectrochemical Water Splitting," Electrochim. Acta, 114 159-64 (2013). https://doi.org/10.1016/j.electacta.2013.09.170
  2. J. Nowotny, Oxide Semiconductors for Solar Energy Conversion: Titanium Dioxide; pp. 364, CRC Press, Boca Raton, 2011.
  3. P. Blood and J. W. Orton, The Electrical Characterization of Semiconductors: Majority Carriers and Electron States; Academic Press, New York, 1992.
  4. J. Bisquert and F. Fabregat-Santiago, Impedance Spectroscopy: a General Introduction and Application to Dye-Sensitized Solar Cells; CRC Press, Boca Raton, 2010.
  5. F. Fabregat-Santiago, G. Garcia-Belmonte, I. Mora-Sero, and J. Bisquert, "Characterization of Nanostructured Hybrid and Organic Solar Cells by Impedance Spectroscopy," Phys. Chem. Chem. Phys., 13 [20] 9083-118 (2011). https://doi.org/10.1039/c0cp02249g
  6. J. Bisquert, "Beyond the Quasistatic Approximation: Impedance and Capacitance of an Exponential Distribution of Traps," Phys. Rev. B, 77 [23] 235203 (2008). https://doi.org/10.1103/PhysRevB.77.235203
  7. J. Bisquert, "Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer," J. Phys. Chem. B, 106 [2] 325-33 (2002). https://doi.org/10.1021/jp011941g
  8. J. Bisquert, "Comment on Diffusion Impedance and Space Charge Capacitance in the Nanoporous Dye-Sensitized Electrochemical Solar Cell" and "Electronic Transport in Dye-Sensitized Nanoporous $TiO_2$ Solar Cells Comparison of Electrolyte and Solid-State Devices," J. Phys. Chem. B, 107 [48] 13541-43 (2003). https://doi.org/10.1021/jp034793y
  9. F. Fabregat-Santiago, E. M. Barea, J. Bisquert, G. K. Mor, K. Shankar, and C. A. Grimes, "High Carrier Density and Capacitance in $TiO_2$ Nanotube Arrays Induced by Electrochemical Doping," J. Am. Chem. Soc., 130 11312-16 (2008). https://doi.org/10.1021/ja710899q
  10. F. Fabregat-Santiago, G. Garcia-Belmonte, J. Bisquert, A. Zaban, and P. Salvador, "Decoupling of Transport, Charge Storage, and Interfacial Charge Transfer in the Nanocrystalline $TiO_2$/Electrolyte System by Impedance Methods," J. Phys. Chem. B, 106 [2] 334-39 (2002). https://doi.org/10.1021/jp0119429
  11. M. G. Lee and H. W. Jang, "Photoactivities of Nanostructured ${\alpha}-Fe_2O_3$ Anodes Prepared by Pulsed Electrodeposition," J. Korean Ceram. Soc., 53 [4] 400-5 (2016). https://doi.org/10.4191/kcers.2016.53.4.400
  12. S. Kang, R. C. Pawar, T. J. Park, J. G. Kim, S.-H. Ahn, and C. S. Lee, "Minimization of Recombination Losses in 3D Nanostructured $TiO_2$ Coated with Few Layered $gC_3N_4$ for Extended Photo-response," J. Korean Ceram. Soc., 53 [4] 393-99 (2016). https://doi.org/10.4191/kcers.2016.53.4.393
  13. D.-T. Nguyen, E.-C. Shin, D.-C. Cho, K.-W. Chae, and J.-S. Lee, "Photoelectrochemical performance of ZnO Thin Film Anodes Prepared by Solution Method," Int. J. Hydrogen Energy, 39 [35] 20764-70 (2014). https://doi.org/10.1016/j.ijhydene.2014.07.010
  14. C.-T. Sah, Fundamentals of Solid State Electronics; World Scientific Publishing Co. Inc, Singapore, 1991.
  15. C.-T. Sah, "The Equivalent Circuit Model in Solid-State Electronics III: Conduction and Displacement Currents," Solid-State Electron., 13 [12] 1547-75 (1970). https://doi.org/10.1016/0038-1101(70)90035-3
  16. G. Garcia-Belmonte, A. Munar, E. M. Barea, J. Bisquert, I. Ugarte, and R. Pacios, "Charge Carrier Mobility and Lifetime of Organic Bulk Heterojunctions Analyzed by Impedance Spectroscopy," Org. Electron., 9 [5] 847-51 (2008). https://doi.org/10.1016/j.orgel.2008.06.007
  17. R. de Levie, "On Porous Electrodes in Electrolyte Solutions: I. Capacitance Effects," Electrochim. Acta, 8 [10] 751-80 (1963). https://doi.org/10.1016/0013-4686(63)80042-0
  18. E.-C. Shin, H.-H. Seo, J.-H. Kim, P.-A. Ahn, S. M. Park, Y. W. Lim, S.-J. Kim, C. H. Kim, D. J. Kim, C. K. Hong, G. Seo, and J.-S. Lee, "A New Diagnostic Tool for the Percolating Carbon Network in the Polymer Matrix," Polymer, 54 [3] 999-1003 (2013). https://doi.org/10.1016/j.polymer.2012.12.057
  19. A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode," Nature, 238 [5358] 37-8 (1972). https://doi.org/10.1038/238037a0
  20. J.-S. Lee and J. Maier, "High Barrier Effects of (000-1)${\mid}$(000-1) Zinc Oxide Bicrystals: Implication for Varistor Ceramics with Inversion Boundaries," J. Mater. Res., 20 [8] 2101-9 (2005). https://doi.org/10.1557/JMR.2005.0243
  21. Z. Li, C. Yao, Y. Yu, Z. Cai, and X. Wang, "Highly Efficient Capillary Photoelectrochemical Water Splitting Using Cellulose Nanofiber Templated $TiO_2$ Photoanodes," Adv. Mater., 26 [14] 2262-67 (2014). https://doi.org/10.1002/adma.201303369
  22. F. L. Formal, N. Tetreault, M. Cornuz, T. Moehl, M. Gratzel, and K. Sivula, "Passivating Surface States on Water Splitting Hematite Photoanodes with Alumina Overlayers," Chem. Sci., 2 [4] 737-43 (2011). https://doi.org/10.1039/C0SC00578A
  23. R. A. Parker, "Static Dielectric Constant of Rutile ($TiO_2$), 1.6-1060 K," Phys. Rev., 124 [6] 1719-22 (1961). https://doi.org/10.1103/PhysRev.124.1719
  24. C. Wang, N. Zhang, Q. Li, Y. Yu, J. Zhang, Y. Li, and H. Wang, "Dielectric Relaxations in Rutile $TiO_2$," J. Am. Ceram. Soc., 98 [1] 148-53 (2015). https://doi.org/10.1111/jace.13250
  25. J.-H. Kim, E.-C. Shin, D.-C. Cho, S. Kim, S. Lim, K. Yang, J. Beum, J. Kim, S. Yamaguchi, and J.-S. Lee, "Electrical Characterization of Polycrystalline Sodium ${\beta}$-Alumina: Revisited and Resolved," Solid State Ionics, 264 22-35 (2014). https://doi.org/10.1016/j.ssi.2014.06.011
  26. S.-H. Moon, Y. H. Kim, D.-C. Cho, E.-C. Shin, D. Lee, W. B. Im, and J.-S. Lee, "Sodium Ion Transport in Polymorphic Scandium NASICON Analog $Na_3Sc_2(PO_4)_3$ with New Dielectric Spectroscopy Approach for Current-Constriction Effects," Solid State Ionics, 289 55-71 (2016). https://doi.org/10.1016/j.ssi.2016.02.017
  27. S.-H. Moon, D.-C. Cho, D. T. Nguyen, E.-C. Shin, and J.-S. Lee, "A Comprehensive Treatment of Universal Dispersive Frequency Responses in Solid Electrolytes by Immittance Spectroscopy: Low Temperature AgI Case," J. Solid State Electrochem., 19 [8] 2457-64 (2015). https://doi.org/10.1007/s10008-015-2888-6
  28. J.-S. Lee, "A Superior Description of AC Behavior in Polycrystalline Solid Electrolytes with Current-Constriction Effects," J. Korean Ceram. Soc., 53 [2] 150-61 (2016). https://doi.org/10.4191/kcers.2016.53.2.150
  29. I. Cesar, K. Sivula, A. Kay, R. Zboril, and M. Gratzel, "Influence of Feature Size, Film Thickness, and Silicon Doping on the Performance of Nanostructured Hematite Photoanodes for Solar Water Splitting," J. Phys. Chem. C, 113 [2] 772-82 (2008). https://doi.org/10.1021/jp809060p
  30. G. Nogami, "Theory of Capacitance-Voltage Characteristics of Semiconductor Electrodes with Interface States," J. Electrochem. Soc., 133 [3] 525-31 (1986). https://doi.org/10.1149/1.2108613
  31. M. Madou, F. Cardon, and W. Gomes, "Impedance Measurements at the N-and P-Type GaP Single Crystal Electrode," J. Electrochem. Soc., 124 [10] 1623-27 (1977). https://doi.org/10.1149/1.2133122
  32. B. Klahr, S. Gimenez, F. Fabregat-Santiago, J. Bisquert, and T. W. Hamann, "Photoelectrochemical and Impedance Spectroscopic Investigation of Water Oxidation with Co-Pi-coated Hematite Electrodes," J. Am. Chem. Soc., 134 [40] 16693-700 (2012). https://doi.org/10.1021/ja306427f
  33. M. Tomkiewicz, "Impedance Spectroscopy of Rectifying Semiconductor/Electrolyte Interfaces," Electrochim. Acta, 35 [10] 1631-35 (1990). https://doi.org/10.1016/0013-4686(90)80019-K
  34. J.-S. Lee and D.-Y. Kim, "Space-Charge Concepts on Grain Boundary Impedance of a High-Purity Yttria-Stabilized Tetragonal Zirconia Polycrystal," J. Mater. Res., 16 [9] 2739-51 (2001). https://doi.org/10.1557/JMR.2001.0374
  35. K. S. Cole and R. H. Cole, "Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics," J. Chem. Phys., 9 [4] 341-51 (1941). https://doi.org/10.1063/1.1750906
  36. S. Havriliak and S. Negami, "A Complex Plane Analysis of ${\alpha}$-Dispersions in Some Polymer Systems," J. Polymer Sci., 14 [1] 99-117 (1966).
  37. D. Losee, "Admittance Spectroscopy of Impurity Levels in Schottky Barriers," J. Appl. Phys., 46 [5] 2204-14 (1975). https://doi.org/10.1063/1.321865
  38. G. Crosbie, "Chemical Diffusivity and Electrical Conductivity in $TiO_2$ containing a Submicron Dispersion of $SiO_2$," J. Solid State Chem., 25 [4] 367-78 (1978). https://doi.org/10.1016/0022-4596(78)90122-6
  39. J. Bisquert, "Influence of the Boundaries in the Impedance of Porous Film Electrodes," Phys. Chem. Chem. Phys., 2 [18] 4185-92 (2000). https://doi.org/10.1039/b001708f
  40. E.-C. Shin, J. Ma, P.-A. Ahn, H.-H. Seo, D. T. Nguyen, and J. S. Lee, "Deconvolution of Four Transmission-Line-Model Impedances in Ni-YSZ/YSZ/LSM Solid Oxide Cells and Mechanistic Insights," Electrochim. Acta, 188 240-53 (2016). https://doi.org/10.1016/j.electacta.2015.11.118
  41. J. Mizusaki, "Model for Solid Electrolyte Gas Electrode Reaction Kinetics; Key Concepts, Basic Model Construction, Extension of Models, New Experimental Techniques for Model Confirmation, and Future Prospects," Electrochem., 82 [10] 819-29 (2014). https://doi.org/10.5796/electrochemistry.82.819
  42. J. R. Macdonald, LEVM/LEVMW manual ver. 8.12 (June 2013).
  43. J. Bisquert, G. Galcia-Belmonte, F. Fabregat-Santiago, N. S. Ferriols, P. Bogdanoff, and E. C. Pereira, "Doubling Exponent Models for the Analysis of Porous Film Electrodes by Impedance. Relaxation of $TiO_2$ Nanoporous in Aqueous Solution," J. Phys. Chem. B, 104 [10] 2287-98 (2000). https://doi.org/10.1021/jp993148h
  44. J. R. Macdonald, "Impedance Spectroscopy," Ann. Biomed. Eng., 20 289-305 (1992). https://doi.org/10.1007/BF02368532
  45. J.-S. Lee, E.-C. Shin, D.-K. Shin, Y. Kim, P.-A. Ahn, H.-H. Seo, J.-M. Jo, J.-H. Kim, G.-R. Kim, Y.-H. Kim, J.-Y. Park, C.-H. Kim, J.-O. Hong, and K.-H. Hur, "Impedance Spectroscopy Models for X5R Multilayer Ceramic Capacitors," J. Korean Ceram. Soc., 49 [5] 475-83 (2012). https://doi.org/10.4191/kcers.2012.49.5.475
  46. J. Moon, J.-A. Park, S.-J. Lee, J.-I. Lee, T. Zyung, E.-C. Shin, and J.-S. Lee, "A Physicochemical Mechanism of Chemical Gas Sensors Using an AC Analysis," Phys. Chem. Chem. Phys., 15 [23] 9361-74 (2013). https://doi.org/10.1039/c3cp44684k
  47. E.-C. Shin, P.-A. Ahn, H.-H. Seo, J.-M. Jo, S.-D. Kim, S.-K. Woo, J.-H. Yu, J. Mizusaki, and J.-S. Lee, "Polarization Mechanism of High Temperature Electrolysis in a Ni-YSZ/YSZ/LSM Solid Oxide Cell by Parametric Impedance Analysis," Solid State Ionics, 232 80-96 (2013). https://doi.org/10.1016/j.ssi.2012.10.028
  48. E.-C. Shin, P.-A. Ahn, H.-H. Seo, and J.-S. Lee, "Application of a General Gas Electrode Model to Ni-YSZ Symmetric Cells: Humidity and Current Collector Effects," J. Korean Ceram. Soc., 53 [5] 511-20 (2016). https://doi.org/10.4191/kcers.2016.53.5.511
  49. J.-S. Lee, J. Jamnik, and J. Maier, "Generalized Equivalent Circuits for Mixed Conductors: Silver Sulfide as a Model System," Monat. Chem. (Chemical Monthly), 140 [9] 1113-19 (2009). https://doi.org/10.1007/s00706-009-0130-x
  50. P.-A. Ahn, E.-C. Shin, G.-R. Kim, and J.-S. Lee, "Application of Generalized Transmission Line Models to Mixed Ionic-Electronic Transport Phenomena," J. Korean Ceram. Soc., 48 [6] 549-58 (2011). https://doi.org/10.4191/kcers.2011.48.6.549
  51. P.-A. Ahn, E.-C. Shin, J.-M. Jo, J.-H. Yu, S.-K. Woo, and J.-S. Lee, "Mixed Conduction in Ceramic Hydrogen/Steam Electrodes by Hebb-Wagner Polarization in the Frequency Domain," Fuel Cells, 12 [6] 1070-84 (2012). https://doi.org/10.1002/fuce.201200066
  52. J. Maier, Physical Chemistry of Ionic Materials: Ions and Electrons in Solids; John Wiley & Sons, 2004.
  53. C. He, Z. Zheng, H. Tang, L. Zhao, and F. Lu, "Electrochemical Impedance Spectroscopy Characterization of Electron Transport and Recombination in ZnO Nanorod Dye-Sensitized Solar Cells," J. Phys. Chem. C, 113 [24] 10322-25 (2009). https://doi.org/10.1021/jp902523c
  54. C. Fabrega, T. Andreu, A. Tarancon, C. Flox, A. Morata, L. CalvoBarrio, and J. Morante, "Optimization of Surface Charge Transfer Processes on Rutile $TiO_2$ Nanorods Photoanodes for Water Splitting," Int. J. Hydrogen Energy, 38 [7] 2979-85 (2013). https://doi.org/10.1016/j.ijhydene.2012.12.077
  55. H. Seo, K. H. Cho, H. Ha, S. Park, J. S. Hong, K. Jin, and K. T. Nam, "Water Oxidation Mechanism for 3d Transition Metal Oxide Catalysts under Neutral Condition," J. Korean Ceram. Soc., 54 [1] 1-8 (2017). https://doi.org/10.4191/kcers.2017.54.1.12

Cited by

  1. Mechanistic Understanding of Improved Performance of Graphene Cathode Inverted Organic Light-Emitting Diodes by Photoemission and Impedance Spectroscopy vol.10, pp.31, 2018, https://doi.org/10.1021/acsami.8b07751
  2. Mechanistic Investigation with Kinetic Parameters on Water Oxidation Catalyzed by Manganese Oxide Nanoparticle Film vol.7, pp.12, 2019, https://doi.org/10.1021/acssuschemeng.9b01159