DOI QR코드

DOI QR Code

Thickness-Dependent Properties of Undoped and Mn-doped (001) PMN-29PT [Pb(Mg1/3Nb2/3)O3-29PbTiO3] Single Crystals

  • Received : 2018.03.01
  • Accepted : 2018.03.21
  • Published : 2018.05.31

Abstract

In order to investigate the effect of thickness on the dielectric and piezoelectric properties of (001) PMN-29PT single crystals, three different types of PMN-29PT samples were prepared using the solid-state single crystal growth (SSCG) method: high density crystal [99%], low density crystal [95%], and high density crystal doped with Mn [98.5%]. When their thickness decreased from 0.5 mm to 0.05 mm, their dielectric constant ($K_3{^T}$), piezoelectric constants ($d_{33}$ and $g_{33}$), and electromechanical coupling factor ($k_t$) decreased continuously. However, their dielectric loss (tan ${\delta}$) increased. The addition of Mn to PMN-PT induced an internal bias electric field ($E_I$), increased the coercive electric field ($E_C$), and prevented local depoling. Therefore, Mn-doped PMN-PT crystals show high stability as well as high performance, even in the form of very thin plates (< 0.2 mm), and thus are suitable for application to high frequency composites, medical ultrasound probes, non-destructive testing devices (NDT), and flexible devices.

Keywords

References

  1. S.-E. Park and T. R. Shrout, "Ultrahigh Strain and Piezoelectric Behavior in Relaxor Based Ferroelectric Single Crystals," J. Appl. Phys., 82 [4] 1804-11 (1997). https://doi.org/10.1063/1.365983
  2. S. Zhang and F. Li, "High Performance Ferroelectric Relaxor-$PbTiO_3$ Single Crystals: Status and Perspective," J. Appl. Phys., 111 [3] 031301-1-50 (2012). https://doi.org/10.1063/1.3679521
  3. B. Jaffe, W. R. Cook, H. Jaffe, Piezoelectric Ceramics; pp. 135-81, Academic Press London and New York, 1997.
  4. S. Zhang, F. Li, X. Jiang, J. Kim, J. Luo, and X. Geng, "Advantages and Challenges of Relaxor-$PbTiO_3$ Ferroelectric Crystals for Electroacoustic Transducers - A Review," Prog. Mater. Sci., 68 1-66 (2015). https://doi.org/10.1016/j.pmatsci.2014.10.002
  5. X. Jiang, J. Kim, and K. Kim, "Relaxor-PT Single Crystal Piezoelectric Sensors," Crystals, 4 [3] 351-76 (2014). https://doi.org/10.3390/cryst4030351
  6. Y. Chen, K.-H. Lam, D. Zhou, Q. Yue, Y. Yu, J. Wu, W. Qiu, L. Sun, C. Zhang, H. Luo, H. L. W. Chan, and J. Dai, "High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications," Sensors, 14 [8] 13730-58 (2014). https://doi.org/10.3390/s140813730
  7. Q. Zhou, K.-H. Lam, H. Zheng, W. Qiu, and K. K. Shung, "Piezoelectric Single Crystal Ultrasonic Transducers for Biomedical Applications," Prog. Mater. Sci., 66 87-111 (2014). https://doi.org/10.1016/j.pmatsci.2014.06.001
  8. G.-T. Hwang, J. Yang, S.-H. Yang, H.-Y. Lee, M. Lee, D.-Y. Park, J.-H. Han, S.-J. Lee, C.-K. Jeong, H. Kim. K.-I. Park, and K.-J. Lee, "A Reconfigurable Rectified Flexible Energy Harvester via Solid-State Single Crystal Grown PMN-PZT," Adv. Energy Mater., 5 [10] 1500051 (2015). https://doi.org/10.1002/aenm.201500051
  9. D.-H. Kim, H.-J. Shin, H. Lee, C. Kyu, H. Park, G.-T. Hwang, H.-Y. Lee, D. J. Joe, J.-H. Han, S.-H. Lee, J. Kim, B. Joung, and K.-J. Lee, "In Vivo Self-Powered Wireless Transmission Using Biocompatible Flexible Energy Harvesters," Adv. Funct. Mater., 27 [25] 1700341 (2017). https://doi.org/10.1002/adfm.201700341
  10. H. Jae, S. Zhang, and T. R. Shrout, "Scaling Effects of Relaxor-$PbTiO_3$ Crystals and Composites for High Frequency Ultrasound," J. Appl. Phys., 107 [12] 124107 (2010). https://doi.org/10.1063/1.3437068
  11. H. Jae, S. Zhang, J. Luo, F. Li, and T. R. Shrout, "Thickness-Dependent Properties of Relaxor-$PbTiO_3$ Ferroelectrics for Ultrasonic Transducers," Adv. Funct. Mater., 20 [18] 3154-62 (2010). https://doi.org/10.1002/adfm.201000390
  12. H. Dammak, M. Guennou, C. Ketchazo, M. Pham Thi, F. Brochin, T. Delaunay, P. Gaucher, E. Le Clezio, and G. Feuillard, "Sample Thickness Dependence of Electromechanical Properties of PZN-PT and PMN-PT Single Crystals"; pp. 249-52 in Proceedings of the 15th IEEE International Symposium on Applications of Ferroelectrics, Sunset Beach, North Carolina, 2006.
  13. S.-J. L. Kang, J.-H. Park, S.-Y. Ko, and H.-Y. Lee, "Solid-State Conversion of Single Crystals: The Principle and the State-of-the-Art," J. Am. Ceram. Soc., 98 [2] 347-60 (2015). https://doi.org/10.1111/jace.13420
  14. H.-Y. Lee, Development of High-Performance Piezoelectric Single Crystals by Using Solid-state Single Crystal Growth (SSCG) Method; pp. 158 in Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials, Ed. by Z.-G. Ye, CRC Press, New York, 2008.
  15. S. Zhang, S.-M. Lee, D.-H. Kim, H.-Y. Lee, and T. R. Shrout, "Elastic, Piezoelectric, and Dielectric Properties of $0.71Pb(Mg_{1/3}Nb_{2/3})O_3$-$0.29PbTiO_3$ Crystals Obtained by Solid-State Crystal Growth," J. Am. Ceram. Soc., 91 [2] 683-86 (2008). https://doi.org/10.1111/j.1551-2916.2007.02190.x
  16. S. Zhang, S.-M. Lee, D.-H. Kim, H.-Y. Lee, and T. R. Shrout, "Temperature Dependence of the Dielectric, Piezoelectric, and Elastic Constants for $Pb(Mg_{1/3}Nb_{2/3})O_3$- $PbZrO_3-PbTiO_3$ Piezocrystals," J. Appl. Phys., 102 [11] 114103-1-5 (2007). https://doi.org/10.1063/1.2817641
  17. S. Zhang, S.-M. Lee, D.-H. Kim, H.-Y. Lee, and T. R. Shrout, "Characterization of Mn-modified $Pb(Mg_{1/3}Nb_{2/3})O_3-PbZrO_3-PbTiO_3$ Single Crystals for High Power Broad Bandwidth Transducers," Appl. Phys. Lett., 93 [12] 122908-1-3 (2008). https://doi.org/10.1063/1.2992081
  18. S. Zhang, C. Randall, and T. R. Shrout, "Characterization of Perovskite Piezoelectric Single Crystals of $0.43BiScO_3-0.57PbTiO_3$ with High Curie Temperature," J. Appl. Phys., 95 [8] 4291-95 (2004). https://doi.org/10.1063/1.1682694
  19. ANSI/IEEE Std 176-1987, IEEE Standard on Piezoelectricity, 1987.
  20. M. Davis, Phase Transitions, Anisotropy and Domain Engineering: the Piezoelectric Properties of Relaxor-ferroelectric Single Crystals, pp. 71-82, in Ph.D. Thesis, Swiss Federal Institute of Technology-EPFL, Lausanne, 2006.
  21. F. Li, S. Zhang, Z. Xu, X. Wei, J. Luo, and T. R. Shrout, "Composition and Phase Dependence of the Intrinsic and Extrinsic Piezoelectric Activity of Domain Engineered (1-x)PMN-xPT Crystals," J. Appl. Phys., 108 [3] 034106 (2010). https://doi.org/10.1063/1.3466978
  22. K. Carl and K. H. Hardtl, "Electrical After-Effect in $Pb(Ti,Zr)O_3$ Ceramics," Ferroelectrics, 17 [1] 473-86 (1978). https://doi.org/10.1080/00150197808236770
  23. Y. Gao, K. Uchino, and D. Viehland, "Time Dependence of the Mechanical Quality Factor in Hard Lead Zirconate Titanate Ceramics: Development of an Internal Dipolar Field and High Power Origin," Jpn. J. Appl. Phys., 45 [12] 9119-24 (2006). https://doi.org/10.1143/JJAP.45.9119
  24. H.-T. Oh, J.-Y. Lee, and H.-Y. Lee, "Mn-Modified PMN-PZT Single Crystals for High Power Piezoelectric Transducers," J. Korean Ceram. Soc., 54 [2] 1-8 (2017). https://doi.org/10.4191/kcers.2017.54.1.12
  25. V. Annapureddy, M. Kim, H. Palneedi, H.-Y. Lee, S.-Y. Choi, W.-H. Yoon, D.-S. Park, J.-J. Choi, B.-D. Hahn, C.-W. Ahn, J.-W. Kim, D.-Y. Jeong, and J. Ryu, "Low-Loss Piezoelectric Single-Crystal Fibers for Enhanced Magnetic Energy Harvesting with Magnetoelectric Composite," Adv. Energy Mater., 6 [24] 1601244 (2016). https://doi.org/10.1002/aenm.201601244
  26. D. R. Patil, Y. Zhou, J.-E. Kang, N. Sharpes, D.-Y. Jeong, Y.-D. Kim, K.-H. Kim, S. Priya, and J. Ryu, "Anisotropic Self-biased Dual-Phase Low Frequency Magneto-Mechano-Electric Energy Harvesters with Giant Power Densities," APL Mater., 2 [4] 046102 (2014). https://doi.org/10.1063/1.4870116
  27. D. R. Patil, R. C. Kambale, Y. Chai, W.-H. Yoon, D.-Y. Jeong, D.-S. Park, J.-W. Kim, J.-J. Choi, C.-W. Ahn, B.-D. Hahn, S. Zhang, K.-H. Kim, and J. Ryu, "Multiple Broadband Magnetoelectric Response in Thickness-controlled Ni/[011] $Pb(Mg_{1/3}Nb_{2/3})O_3-Pb(Zr,Ti)O_3$ Single Crystal/Ni Laminates," Appl. Phys. Lett., 103 [5] 052907 (2013). https://doi.org/10.1063/1.4817383

Cited by

  1. Recent Developments in Piezoelectric Crystals vol.55, pp.5, 2018, https://doi.org/10.4191/kcers.2018.55.5.12
  2. FEM 시뮬레이션을 이용한 공기 중에서의 초음파 트랜스듀서의 거동 vol.28, pp.5, 2018, https://doi.org/10.6111/jkcgct.2018.28.5.185
  3. Dielectric Relaxor and Conductivity Mechanism in Fe-Substituted PMN-32PT Ferroelectric Crystal vol.9, pp.5, 2018, https://doi.org/10.3390/cryst9050241
  4. Face-shear 36-mode magnetoelectric composites with piezoelectric single crystal and Metglas laminate vol.115, pp.10, 2018, https://doi.org/10.1063/1.5120092
  5. PMN-PZT/Ni 자기-전기 복합체에서 단결정 압전 모드에 따른 자기장 감도 특성 vol.29, pp.1, 2020, https://doi.org/10.5369/jsst.2019.29.1.45
  6. Induced slim ferroelectric hysteresis loops and enhanced energy-storage properties of Mn-doped (Pb0·93La0.07)(Zr0·82Ti0.18)O3 anti-ferroelectric thick films by aerosol deposition vol.47, pp.22, 2018, https://doi.org/10.1016/j.ceramint.2021.08.039