DOI QR코드

DOI QR Code

Interfacial Properties of Atomic Layer Deposited Al2O3/AlN Bilayer on GaN

  • Kim, Hogyoung (Department of Visual Optics, Seoul National University of Science and Technology(Seoultech)) ;
  • Kim, Dong Ha (Department of Materials Science and Engineering, Seoul National University of Science and Technology(Seoultech)) ;
  • Choi, Byung Joon (Department of Materials Science and Engineering, Seoul National University of Science and Technology(Seoultech))
  • Received : 2018.03.21
  • Accepted : 2018.04.17
  • Published : 2018.05.27

Abstract

An $Al_2O_3/AlN$ bilayer deposited on GaN by atomic layer deposition (ALD) is employed to prepare $Al_2O_3/AlN/GaN$ metal-insulator-semiconductor (MIS) diodes, and their interfacial properties are investigated using X-ray photoelectron spectroscopy (XPS) with sputter etch treatment and current-voltage (I-V) measurements. XPS analyses reveal that the native oxides on the GaN surface are reduced significantly during the early ALD stage, indicating that AlN deposition effectively clelans up the GaN surface. In addition, the suppression of Al-OH bonds is observed through the ALD process. This result may be related to the improved device performance because Al-OH bonds act as interface defects. Finally, temperature dependent I-V analyses show that the barrier height increases and the ideality factor decreases with an increase in temperature, which is associated with the barrier inhomogeneity. A Modified Richardson plot produces the Richardson constant of $A^{**}$ as $30.45Acm^{-2}K^{-2}$, which is similar to the theoretical value of $26.4Acm^{-2}K^{-2}$ for n-GaN. This indicates that the barrier inhomogeneity appropriately explains the forward current transport across the $Au/Al_2O_3/AlN/GaN$ interface.

Keywords

References

  1. S. Strite and H. Morkoc, J. Vac. Sci. Technol., B, 10, 1237 (1992). https://doi.org/10.1116/1.585897
  2. S. Pearton, J. Zolper, R. Shul, and F. Ren, J. Appl. Phys., 86, 1 (1999). https://doi.org/10.1063/1.371145
  3. K. Chang, C. Cheng, and C. Lang, Solid State Electron., 46, 1399 (2002). https://doi.org/10.1016/S0038-1101(02)00085-0
  4. Q. Wang, X. Cheng, L. Zheng, L. Shen, J. Li, D. Zhang, R. Qian, and Y. Yu, RSC Adv., 7, 11745 (2017). https://doi.org/10.1039/C6RA27190A
  5. X. Liu, S. Zhao, L. Zhang, H. Huang, J. Shi, C. Zhang, H. Lu, P. Wang, and D. Zhang, Nanoscale Res. Lett., 10, 109 (2015). https://doi.org/10.1186/s11671-015-0802-x
  6. X. Lu, J. Ma, Z. Liu, H. Jiang, T. Huang, and K. Lau, Phys. Status Solidi A, 211, 775 (2014). https://doi.org/10.1002/pssa.201300495
  7. B. Lakshmi, M. Reddy, A. Kumar, and V. Reddy, Curr. Appl. Phys., 12, 765 (2012). https://doi.org/10.1016/j.cap.2011.11.002
  8. Y. Chang, H. Chiu,Y. Lee, M. Huang, K. Lee, Y. Chiu, Y. Wang, J. Kwo, and M. Hong, Appl. Phys. Lett., 90, 232904 (2007). https://doi.org/10.1063/1.2746057
  9. D. Ye, B. Yang, K. Ng, J. Bude, G. Wilk, S. Halder, and J. Hwang, Appl. Phys. Lett., 86, 063501 (2005). https://doi.org/10.1063/1.1861122
  10. H. Kang, M. Reddy, D. Kim, K. Kim, J. Ha, H. Choi, and J. Lee, J. Phys. D: Appl. Phys., 46, 155101 (2013). https://doi.org/10.1088/0022-3727/46/15/155101
  11. S. Huang, Q. Jiang, S. Yang, Z. Tang, and K. Chen, IEEE Electron Dev. Lett., 34, 193 (2013). https://doi.org/10.1109/LED.2012.2229106
  12. X. Wu, R. Liang, L. Guo, L. Lei, L. Xiao, S. Shen, J. Xu, and J. Wang, Appl. Phys. Lett., 109, 232101 (2016). https://doi.org/10.1063/1.4971352
  13. H. Kim, D. Kim, and B. Choi, Appl. Phys. A, 123, 800 (2017). https://doi.org/10.1007/s00339-017-1430-3
  14. J. Ma, B. Garni, N. Perkins, W. O’Brien, T. Kuech, and M. Lagally, Appl. Phys. Lett., 69, 3351 (1996). https://doi.org/10.1063/1.117303
  15. R. Carli and C. Bianchi, Appl. Surf. Sci., 74, 99 (1994). https://doi.org/10.1016/0169-4332(94)90104-X
  16. A. Chanda, S. Verma, and C. Jacob, Bull. Mater. Sci., 30, 561 (2007). https://doi.org/10.1007/s12034-007-0087-5
  17. R. Suri, D. Lichtenwalner, and V. Misra, Appl. Phys. Lett., 96, 112905 (2010). https://doi.org/10.1063/1.3357422
  18. B. Brennan, X. Qin, H. Dong, J. Kim, and R. Wallace, Appl. Phys. Lett., 101, 211604 (2012). https://doi.org/10.1063/1.4767520
  19. R. Li, Y. Zhao, R. Hou, X. Ren, S. Yuan, Y. Lou, Z. Wang, D. Li, and L. Shi, J. Photochem. Photobiol., A, 319, 62 (2016).
  20. M. Alevli, C. Ozgit, I. Donmez, and N. Biyikli, Phys. Status Solidi A, 209, 266 (2012). https://doi.org/10.1002/pssa.201127430
  21. S. Ozaki, T. Ohki, M. Kanamura, T. Imada, N. Nakamura, N. Okamoto, T. Miyajima, and T. Kikkawa, CS MANTECH Conf. Apr. 23rd - 26th, 2012, Boston, USA
  22. L. Rebouta, A. Sousa, M. Andritschky, F. Cerqueira, C. Tavares, P. Santilli, and K. Pischow, Appl. Surf. Sci., 356, 203 (2015). https://doi.org/10.1016/j.apsusc.2015.07.193
  23. C. Hinkle, A. Sonnet, F. Vogel, S. McDonnell, G. Hughes, M. Milojevic, B. Lee, F. Aguirre-Tostado, K. Choi, H. Kim, J. Kim, and R. Wallace, Appl. Phys. Lett., 92, 071901 (2008). https://doi.org/10.1063/1.2883956
  24. W. Wei, Z. Qin, S. Fan, Z. Li, K. Shi, Q. Zhu, and G. Zhang, Nanoscale Res. Lett., 7, 562 (2012). https://doi.org/10.1186/1556-276X-7-562
  25. C. Negrila, M. Lazarescu, C. Logofatu, C. Cotirlan, R. Ghita, F. Frumosu, and L. Trupina, J. Nanomater., 2016, 7574526 (2016).
  26. M. Alexander, G. Thompson, and G. Benmson, Surf. Interface Anal., 29, 468 (2000). https://doi.org/10.1002/1096-9918(200007)29:7<468::AID-SIA890>3.0.CO;2-V
  27. R. Tung, Mater. Sci. Eng. R, 35, 1 (2001). https://doi.org/10.1016/S0927-796X(01)00037-7
  28. S. Liu, S. Yang, Z. Tang, Q. Jiang, C. Liu, M. Wang, B. Shen, and K. Chen, Appl. Phys. Lett., 106, 051605 (2015). https://doi.org/10.1063/1.4907861
  29. J. Son, V. Chobpattana, B. McSkimming, and S. Stemmer, J. Vac. Sci. Technol. A, 33, 020602 (2015).
  30. S. Yang, Z. Tang, K. Wong, Y. Lin, C. Liu, Y. Lu, S. Huang, and K. Chen, IEEE Electron Dev. Lett., 34, 1497 (2013). https://doi.org/10.1109/LED.2013.2286090
  31. J. Gao, W. Li, S. Mandal, and S. Chowdhury, Proc. SPIE 10381, Wide Bandgap Power Devices and Applications II, 1038103 (2017).
  32. S. Gu, E. Chagarov, J. Min, S. Madisetti, S. Novak, S. Oktyabrsky, A. Kerr, T. Kaufman-Osborn, A. Kummel, and P. Asbeck, Appl. Surf. Sci. 317, 1022 (2014).