DOI QR코드

DOI QR Code

Synthesis of Graphene Using Polystyrene and the Effect of Boron Oxide on the Synthesis of Graphene

폴리스타이렌을 이용한 그래핀 합성 및 산화 붕소가 그래핀 합성에 미치는 영향

  • Choi, Jinseok (Department of Advanced Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • An, Sung Jin (Department of Advanced Materials Science and Engineering, Kumoh National Institute of Technology)
  • 최진석 (금오공과대학교 신소재공학과) ;
  • 안성진 (금오공과대학교 신소재공학과)
  • Received : 2018.03.28
  • Accepted : 2018.04.18
  • Published : 2018.05.27

Abstract

Graphene is an interesting material because it has remarkable properties, such as high intrinsic carrier mobility, good thermal conductivity, large specific surface area, high transparency, and high Young's modulus values. It is produced by mechanical and chemical exfoliation, chemical vapor deposition (CVD), and epitaxial growth. In particular, large-area and uniform single- and few-layer growth of graphene is possible using transition metals via a thermal CVD process. In this study, we utilize polystyrene and boron oxide, which are a carbon precursor and a doping source, respectively, for synthesis of pristine graphene and boron doped graphene. We confirm the graphene grown by the polystyrene and the boron oxide by the optical microscope and the Raman spectra. Raman spectra of boron doped graphene is shifted to the right compared with pristine graphene and the crystal quality of boron doped graphene is recovered when the synthesis time is 15 min. Sheet resistance decreases from approximately $2000{\Omega}/sq$ to $300{\Omega}/sq$ with an increasing synthesis time for the boron doped graphene.

Keywords

References

  1. A. K. Geim, Science, 324, 1530 (2009). https://doi.org/10.1126/science.1158877
  2. A. K. Geim, and K. S. Novoselov, Nat. Mater., 6, 183 (2007). https://doi.org/10.1038/nmat1849
  3. X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Nat. Nanotechnol., 3, 491 (2008). https://doi.org/10.1038/nnano.2008.199
  4. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science, 320, 1308 (2008). https://doi.org/10.1126/science.1156965
  5. K. S. Novoselov, A. K. Geim, S. V. Morzov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  6. Y. Zhang, Y. -W. Tan, H. L. Stormer, and P. Kim, Nature, 438, 201 (2005). https://doi.org/10.1038/nature04235
  7. C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. Heer, J. Phys. Chem. B, 108, 19912 (2004). https://doi.org/10.1021/jp040650f
  8. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammers, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon, 45, 1558 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
  9. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. -H. Ahn, P. Kim, J. -Y Choi, and B. H. Hong, Nature, 457, 706 (2009). https://doi.org/10.1038/nature07719
  10. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science, 324, 1312 (2009). https://doi.org/10.1126/science.1171245
  11. S. Bae, H. Kim, Y. Lee, X. Xu, J. -S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. -J. Kim, K. S. Kim, B. Özyilmaz, J. -H. Ahn, B. H. Hong, and S. Iijima, Nat. Nanotechnol., 5, 574 (2010). https://doi.org/10.1038/nnano.2010.132
  12. I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, and S. smirnov, ACS Nano, 5, 6069 (2011). https://doi.org/10.1021/nn201978y
  13. A. Reina, S. Thiele, X. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A., and Schaefer, J. Kong, Nano Res., 2, 509 (2009). https://doi.org/10.1007/s12274-009-9059-y
  14. H. Zhou, W. J. Yu, L. Liu, R. Cheng, Y. Chen, X. Huang, Y. Liu, Y. Wang, Y. Huang, and X. Duan, Nat. Commun., 4, 2096 (2013). https://doi.org/10.1038/ncomms3096
  15. B. Guo, L. Fang, B. Zhang, and J. R. Gong, Insciences J., 1, 80 (2011).
  16. L. S. Panchakarla, K. S. Subrahmanyam, S. K. Saha, A. Govindaraj, H. R. Krishnamurthy, U. V. Waghmare, and C. N. R. Rao, Adv. Mater., 21, 2726 (2009).
  17. R. Lv, Q. Li, A. R. Botello-Méndez, T. Hayashi, B. Wang, A. Berkdemir, Q. Hao, A. L. Elías, R. Cruz-Silva, H. R. Gutierrez, Y. A. Kim, H. Muramatsu, J. Zhu, M. Endo, H. Terrones, J. -C. Charlier, M. Pan, and M. Terrones, Sci. Rep., 2, 1 (2012).
  18. M. Ahmed, N. Kishi, R. Sugita, A. Fukaya, I. Khatri, J. Liang, S. M. Mominuzzaman, T. Soga, and T. Jimbo, J. Mater. Sci.: Mater. Electron., 24, 2151 (2013). https://doi.org/10.1007/s10854-013-1073-x
  19. Y. Miyata, K. Kamon, K. Ohashi, R. Kitaura, M. Yoshimura, and H. Shinohara, Appl. Phys. Lett., 96, 263105 (2010). https://doi.org/10.1063/1.3458797
  20. A. Srivastava, C. Galande, L. Ci, L. Song, C. Rai, D. Jariwala, K. F. Kelly, and P. M. Ajayan, Chem. Mater., 22, 3457 (2010). https://doi.org/10.1021/cm101027c
  21. G. Kalita, M. Matsushima, H. Uchida, K. Wakita, and M. Umeno, J. Mater. Chem., 20, 9713 (2010). https://doi.org/10.1039/c0jm01352h
  22. N. Liu, A. Chortos, T. Lei, L. Jin, T. R. Kim, W. -G. Bae, C. Zhu, S. Wang, R. Pfattner, X. Chen, R. Sinclair, and Z. Bao, Sci. Adv., 3, e1700159 (2017). https://doi.org/10.1126/sciadv.1700159
  23. C. Wang, Y. Zhou, L. He, T. -W. Ng, G. Gong, Q. -H. Wu, F. Gao, C. -S. Lee, and W. Zhang, Nanoscale, 5, 600 (2013). https://doi.org/10.1039/C2NR32897F
  24. A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K. S. Novoselov, and C. Casiraghi, Nano Lett., 12, 3925 (2012). https://doi.org/10.1021/nl300901a
  25. S. J. An, Y. Zhu, S. H. Lee, M. D. Stoller, T. Emilsson, S. Park, A. Velamakanni, J. An, and R. S. Ruoff, J. Phys. Chem. Lett., 1, 1259 (2010). https://doi.org/10.1021/jz100080c
  26. Z. -H. Sheng, H. -L. Gao, W. -J. Bao, F. -B. Wang, and X. -H. Xis, J. Mater. Chem., 22, 390 (2012). https://doi.org/10.1039/C1JM14694G
  27. H. L. Poh, P. Simek, Z. Sofer, I. Tomandl, and M. Pumera, J. Mater. Chem. A, 1, 13146 (2013). https://doi.org/10.1039/c3ta12460f
  28. X. Wang, G. Sun, P. Routh, D. -H. Kim, W. Huang, and P. Chen, Chem. Soc. Rev., 43, 7067 (2014). https://doi.org/10.1039/C4CS00141A