DOI QR코드

DOI QR Code

Proton Conductivity of Niobium Phosphate Glass Thin Films

  • Kim, Dae Ho (Department of Advanced Engineering, Kumoh National Institute of Technology) ;
  • Park, Sung Bum (Department of Advanced Engineering, Kumoh National Institute of Technology) ;
  • Park, Yong-il (Department of Advanced Engineering, Kumoh National Institute of Technology)
  • Received : 2018.04.25
  • Accepted : 2018.04.30
  • Published : 2018.05.27

Abstract

Among the fuel cell electrolyte candidates in the intermediate temperature range, glass materials show stable physical properties and are also expected to have higher ion conductivity than crystalline materials. In particular, phosphate glass has a high mobility of protons since such a structure maintains a hydrogen bond network that leads to high proton conductivity. Recently, defects like volatilization of phosphorus and destruction of the bonding structure have remarkably improved with introduction of cations, such as Zr4+ and Nb5+, into phosphate. In particular, niobium has proton conductivity on the surface because of higher surface acidity. It can also retain phosphorus content during heat treatment and improve chemical stability by bonding with phosphorus. In this study, we fabricate niobium phosphate glass thin films through sol-gel processing, and we report the chemical stability and electrical properties. The existence of the hydroxyl group in the phosphate is confirmed and found to be preserved at the intermediate temperature region of $150-450^{\circ}C$.

Keywords

References

  1. Brian C. H. Steele, and Angelika Heinzel, Nature., 414, 345 (2001). https://doi.org/10.1038/35104620
  2. K.-D. Kreuer, Chem. Mater., 8, 610 (1996). https://doi.org/10.1021/cm950192a
  3. P. Heo, K. Ito, A. Tomita, and T. Hibino, Angew. Chem. Int. Ed., 47, 7841 (2008). https://doi.org/10.1002/anie.200801667
  4. S. M. Haile, C. R. I. Chisholm, K. Sasaki, D. A. Boysen, and T. Uda, Faraday Discuss., 134, 17 (2007). https://doi.org/10.1039/B604311A
  5. T. Norby, Solid State Ionics, 125, 1 (1999). https://doi.org/10.1016/S0167-2738(99)00152-6
  6. Y. Abe, H. Hosono, and Y. Ohta, Phys. Rev. B: Condens. Matter Mater. Phys., 38, 10166 (1988). https://doi.org/10.1103/PhysRevB.38.10166
  7. S. W. Martin, J. Am. Ceram. Soc., 74, 1767 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb07788.x
  8. J. E. Pemberton and L. Latifzadeh, Chem. Mater., 3, 195 (1991). https://doi.org/10.1021/cm00013a039
  9. F. F. Sene, J. R. Martinelli, and L. Gomes, J. Non-Cryst. Solids, 48, 30 (2004).
  10. F. F. Sene, K. R. Martinelli, and L. Gomes, J. Non-Cryst. Solids, 348, 63 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.08.127
  11. S. V. Raman, J. Non-Cryst. Solids, 263&264, 395 (2000).
  12. Y. Abe, H. Shimakawa, and L. L Hench, J. Non-Cryst. Solids, 51, 357 (1982). https://doi.org/10.1016/0022-3093(82)90156-9
  13. Y. Abe, G. Li, M. Nogami, T. Kasuga, and L. L. Hench, J. Electrochem. Soc., 143, 144 (1996). https://doi.org/10.1149/1.1836399
  14. T. Kasuga, M. Nakano, and M. Nogami, Adv. Mater., 14, 1490 (2002). https://doi.org/10.1002/1521-4095(20021016)14:20<1490::AID-ADMA1490>3.0.CO;2-M
  15. K. Makita, M. Nogami, and Y. Abe, J. Mater. Sci. Lett., 16, 550 (1997). https://doi.org/10.1023/A:1018561620834
  16. B. C. Lee, Y. J. Kwon, and B. K. Ryu, J. Korean Ceram. Soc., 39, 265 (2002). https://doi.org/10.4191/KCERS.2002.39.3.265
  17. S. H. Lee, Master Thesis (in Korean), p.35, Kumoh National Institute of Technology, Gumi, Korea (2013).
  18. J.-E. Kim, S. B. Park and Y.-I. Park, J. Solid State Ionics, 216, 15 (2012). https://doi.org/10.1016/j.ssi.2011.12.004
  19. M. Nogami, K. Miyamura, and Y. Abe, J. Electro. Soc., 144, 2175 (1997). https://doi.org/10.1149/1.1837760
  20. I. Nowak and M. Ziolek, Chem. Rev., 99, 2603 (1999).
  21. A. E. Jazouli, J. C. Viala, C. Parent, G. L. Flem, and P. Hagenmuller, J. Solid State Chem., 73, 433 (1988). https://doi.org/10.1016/0022-4596(88)90129-6
  22. A. E. Jazouli, R. Brochu, J. C. Viala, R. Ohazacuaga, C. Delmas, and G. L. Flem, Ann. Chim. (Cachan, Fr.), 7, 285 (1982).
  23. M. I. Abd El-Ati and A. A. Higazy, J. Mater. Sci., 35, 6175 (2000). https://doi.org/10.1023/A:1026768925365
  24. W. storek, C. Peuker, and H. Geissler, J. Glass Sicence and Technology, 73, 373 (2000).
  25. E. N. Boulos and N. J. Kreidl: J. Can. Ceram. Soc., 41, 83 (1972).
  26. M. Aparicio and L.C. Klein, J. Sol-Gel Sci. Technol., 28, 199 (2003). https://doi.org/10.1023/A:1026029132719
  27. V. Ramani, H. R. Kunz, and J. M. Fenton, J. Membr. Sci., 232, 31 (2004). https://doi.org/10.1016/j.memsci.2003.11.016
  28. M. Kotama, K. Nakanishi, H. Hosono, Y. Abe, and L. L. Hench, J. Electrochem. Soc., 138, 2928 (1991). https://doi.org/10.1149/1.2085341
  29. Y. Abe, H. Hosono, O. Akita, and L. L. Hench J. Electro- chem. Soc., 141, L64 (1994). https://doi.org/10.1149/1.2054988
  30. T. Uma and M. Nogami, J. Membrane Sci., 280, 744 (2006). https://doi.org/10.1016/j.memsci.2006.02.033
  31. B.C. Sales, J.U. Otaigbe, G.H. Beall, L.A. Boatner, and K.O. Ramey, J. Non-Cryst. Solids, 226, 287 (1998). https://doi.org/10.1016/S0022-3093(98)00415-3
  32. S. Donze, L. Montagne, J. Grimblot, L. Gengembre, and G. Palavit, Phosphorus Research Bulletin, 10, 509 (1999). https://doi.org/10.3363/prb1992.10.0_509
  33. Richard K. Brow, J. Non-Cryst. Solids, 194, 267 (1996). https://doi.org/10.1016/0022-3093(95)00500-5
  34. S. Mizusaki, Y. Toyoda, K. Nakayama, Y. Nagata, T.C. Ozawa, Y. Noro, and H. Samata, J. Membr. Sci., 355, 960 (2009).
  35. S. Prakash, W. E. Mustain, S. H. Park, and P. A. Kohl, J. Power Sources, 175, 91 (2008). https://doi.org/10.1016/j.jpowsour.2007.09.060
  36. M. T. Colomer, Adv. Mater., 18, 371 (2006). https://doi.org/10.1002/adma.200500689