DOI QR코드

DOI QR Code

[Retraction] The Evaluation of Lithium Bearing Brine Aquifer Systems (1) (An Hydrogeological, Chemical Characteristics and Occurrences)

[논문 철회] 리튬 함유 고염수체(Brine Aquifer System)의 자원 평가 (1) (수리지질학적 및 화학적인 특성과 산출상태)

  • Received : 2018.02.01
  • Accepted : 2018.04.24
  • Published : 2018.04.30

Abstract

The recent increase in demand for lithium has led to the development of new brine prospects, The brines are hosted in closed salar basin aquifers of two types that are mature halite salars and immature clastic salars. Salar brines also contain other elements of commercial interest, most notably potassium and boron. As a result, there has been a plethora of new exploration projects focused on the brines hosted in the aquifers of the intermontane-closed basins. The estimate of lithium resources and reserves in these salars depends on a detailed knowledge of aquifer geometry, porosity, and brine grade. Because the resource is in a fluid state, it has the propensity to move, mix, rearrange itself relatively rapidly during the course of a project lifetime, and lower recovery factors compared with most metalliferous and industrial mineral deposits due to reliance on pumping of the brine from wells for extraction. This is unlike any other type of metallic mineral resource and hence a different approach specially focusing on hydrogeology and brine hydrology is required for these prospects.

Keywords

References

  1. Alonso, R.N., Jordan, T.E., Tebbutt, K.T., and Vandervoort, D.S., 1991, Giant evaporite belts of the Neogene central Andes, Geology, 19, 401-404. https://doi.org/10.1130/0091-7613(1991)019<0401:GEBOTN>2.3.CO;2
  2. Badaut, D. and Risacher, F., 1983, Authigenic smectite on diatom frustules in Bolivian saline lakes, Geochimica et Cosmochimica Acta, 47, 363-375. https://doi.org/10.1016/0016-7037(83)90259-4
  3. Casas, E. and Lowenstein, T.K., 1989, Diagenesis of saline pan halite: Comparisons of petrographic features of Modern, Quaternary and Permian halites, J. Sediment Petrol., 59, 724-739.
  4. Chong, G., Mendoza, M., Garcia-Veigas, J., Pueyo, J.J., and Turner, P., 1999, Evolution and geochemical signatures in a Neogene forearcevaporitic basin: The Salar Grande (Central Andes of Chile), Palaeogeogr. Palaeoclimatol. Palaeoecol., 151, 39-54. https://doi.org/10.1016/S0031-0182(99)00014-0
  5. de Silva, S.L., 1989, Geochronology and Stratigraphy of the Ignimbrites from the $21^{\circ}$ 30'S to $23^{\circ}$ 30'S portion of the Central Andes of Northern Chile, J. of Volc. and Geotherm. Res., 37, 93-131. https://doi.org/10.1016/0377-0273(89)90065-6
  6. Einsele, G., 2000, Sedimentary Basins: Evolution, Facies and Sediment Budget: Berlin, Springer-Verlag, p.792.
  7. Ericksen, G.E. and Salas, R., 1989, Geology and resources of salars in the Central Andes, Ericken, G.E., Canas Pinochet, M.T., and Reinemund, J.A., eds., Geology of the Andes and Its Relation to Hydrocarbon and Mineral Resources, Circum-Pacific Council for Energy and Mineral Resources, 11, 151-172.
  8. Evans, K., 2010, Lithium's future supply, demand, The Northern Miner, 96, 11-12.
  9. Fritz, S.C., Baker, P.A., Lowenstein, T.K., Seltzer, G.O., Rigsby, C.A., Dwyer, G.S., Tapia, P.M., Arnold, K.K., Ku, T.-L., and Luo, S., 2004, Hydrologic variation during the last 170,000 years in the southern hemisphere tropics of South America, Quat. Res., 61, 95-104. https://doi.org/10.1016/j.yqres.2003.08.007
  10. Ghosh, P., Garzione, C.N., and Eiler, J.M., 2006, Rapid uplift of the Altiplano revealed through 13C-18O bonds in paleosol carbonates, Science, 311, 511-515. https://doi.org/10.1126/science.1119365
  11. Gibert, R.O., Taberner, C., Saez, A., Giralt, S., Alonso, R.N., Edwards, R.L., and Pueyo, J.J., 2009, Igneous origin of $CO_2$ in ancient and recent hot spring waters and travertines from the northern Argentinean Andes, J. Sediment. Res., 79, 554-567. https://doi.org/10.2110/jsr.2009.061
  12. Hahn, J.S., 2000, Groundwater Environment and Pollution, Bakyong Publisher, Seoul, Korea, p.94-96.
  13. Hahn, J.S., 2015, Hydrogeology and Groundwater Modeling, Naehwa Publishing Co., Ltd, Seoul, Korea, p.529.
  14. Hardie, L.A., Smoot, J.P., and Eugster, H.P., 1978, Saline lakes and their deposits: A sedimentological approach, International Association of Sedimentologists, Special Publication, 2, 7-41.
  15. Hartley, A.J. and Chong, G., 2002, Late Pliocene age for the Atacama Desert: Implications for the desertification of western South America, Geology, 30, 43-46. https://doi.org/10.1130/0091-7613(2002)030<0043:LPAFTA>2.0.CO;2
  16. Hartley, A.J., Chong, G., Houston, J., and Mather, A., 2005, 150 million years of climatic stability: Evidence from the Atacama Desert, northern Chile, J. Geol. Soc. 162, 421-424. https://doi.org/10.1144/0016-764904-071
  17. Houston, J., 2006, Evaporation in the Atacama Desert: An empirical study of spatio-temporal variations and their causes, J. Hydrol., 330, 402-412. https://doi.org/10.1016/j.jhydrol.2006.03.036
  18. Houston, J., Butcher, A., Ehren, P., Evans, K., and Godfrey, L., 2011, The evaluation of brine prospects and the requirement for modifications to filing standards, Econ Geol, 106, 1225-1239. https://doi.org/10.2113/econgeo.106.7.1225
  19. Kasemann, S.A., Meixner, A., Erzinger, J., Viramonte, J.G., Alonso, R.N., and Franz, G., 2004, Boron isotope composition of geothermal fluids and borate minerals from salar deposits (Central Andes, NW Argentina), J. South Am. Earth Sci., 16, 685-697. https://doi.org/10.1016/j.jsames.2003.12.004
  20. Kay, S.M., Coira, B., Worner, G., Kay, R.W., and Singer, B.S., 2011, Geochemical, isotopic and single crystal $^{40}Ar/^{39}Ar$ age constraints on the evolution of the Cerro Galan ignimbrites, Bull. Volcanol., 73, 1487-1511. https://doi.org/10.1007/s00445-010-0410-7
  21. King, M., Kelley, R., and Abbey, D., 2012, Feasibility Study Reserve Estimation and Lithium Carbonate and Potash Produc-Reserve Estimation and Lithium Carbonate and Potash Production at the Cauchari-Olaroz Salars, Jujuy Province, Argentina.
  22. Lowenstein, T. and Risacher, F., 2009, Closed basin brine evolution and the influence of Ca-Cl inflow waters: Death Valley and Bristol Dry Lake, California, Qaidam Basin, China, and Salar de Atacama, Chile, Aquat. Geochem., 15, 71-94. https://doi.org/10.1007/s10498-008-9046-z
  23. Marrett, R.A., Allmendinger, R.W., Alonso, R.N., and Drake, R.E., 1994, Late Cenozoic tectonic evolution of the Puna Plateau and adjacent fore land, northwestern Argentine Andes, J. South Am. Earth Sci., 7, 179-207. https://doi.org/10.1016/0895-9811(94)90007-8
  24. Oncken, O., Chong, G., Franz, G., Giese, P., Gotze, H., Ramos, V., Strecker, M., and Wigger, P., 2006, The Andes: Active Subduction Orogeny, Berlin-Springer, p.569.
  25. Orti, F. and Alonso, R.N., 2000, Gypsum-hydroboracite association in the Sijes Formation (Miocene, NW Argentina): Implications for the genesisof Mg-bearing borates, J. Sediment. Res., 70, 664-681. https://doi.org/10.1306/2DC4092F-0E47-11D7-8643000102C1865D
  26. Pablo Cortegoso, 2016, Development Of Lithium Brine Project, SRK Consulting Co., USA, p.2.
  27. Placzek, C., Quade, J., and Patchett, P.J., 2006, Geochronology and stratigraphy of late Pleistocene lake cycles on the southern Bolivian Altiplano: Implications for causes of tropical climate change, Geol. Soc. Am. Bull., 118, 515-532. https://doi.org/10.1130/B25770.1
  28. Reading, H.G., 1996, Sedimentary Environments: Processes, Facies and Stratigraphy: Oxford, Blackwell Science, p.688.
  29. Rech, J.A., Currie, B.S., Shullenberger, E.D., Dunagan, S.T., Jordan, T.E., Blanco, N., Tomlinson, A., Rowe, H., and Houston, J., 2010, Evidence for the development of the Andean rain shadow from a Neogene isotopic record in the Atacama Desert, Earth Planet. Sci. Lett., 292, 371-382. https://doi.org/10.1016/j.epsl.2010.02.004
  30. Reijes, J. and McClay, K., 2003, The Salina del Fraile pull-apart basin, northwest Argentina, J. Geol. Soc. London, Special Paper 210, 197-209. https://doi.org/10.1144/GSL.SP.2003.210.01.12
  31. Rettig, S.L., Jones, B.F., and Risacher, F., 1980, Geochemical evolution of brines in the Salar de Uyuni, Bolivia, Chem. Geol., 30, 57-79. https://doi.org/10.1016/0009-2541(80)90116-3
  32. Risacher, F. and Fritz, B., 1991, Quaternary geochemical evolution of the salars of Uyuni and Coipasa, Central Altiplano, Bolivia, Chem. Geol., 90, 211-231. https://doi.org/10.1016/0009-2541(91)90101-V
  33. Risacher, F., Alonso, H., and Salazar, C., 2003, The origin of brines and salts in Chilean Salars: A hydrochemical review, Earth Sci. Rev., 63, 249-293. https://doi.org/10.1016/S0012-8252(03)00037-0
  34. Vandervoort, D.S., Jordan, T.E., Zeitler, P.K., and Alonso, R.N., 1995, Chronology of internal drainage development and uplift, southern Puna plateau, Argentine Central Andes, Geology, 23(2), 145-148. https://doi.org/10.1130/0091-7613(1995)023<0145:COIDDA>2.3.CO;2
  35. Vinante, D. and Alonso, R.N., 2006, Evapofacies del Salar de Hombre Muerto, Puna Argentina: Distribucion y genesis, Rev. Asoc. Geol. Argent., 61, 286-297.
  36. Warren, J., 1999, Evaporites, Their Evolution and Economics, Oxford, Blackwell, p.438.
  37. Zandt, G., Leidig, M., Chmielowski, J., Baumont, D., and Yuan, Zandt, G., Leidig, M., Chmielowski, J., Baumont, D., and Yuan, X., 2003, Seismic detection and characterisation of the Altiplano-Puna magma body, Central Andes, Pure Appl. Geophys., 160, 789-807. https://doi.org/10.1007/PL00012557