DOI QR코드

DOI QR Code

폐 추진제 소각을 위한 유동층 반응기 설계 및 CFD 공정 모사

Design and Simulation of Fluidized Bed System for Waste Propellant Treatment by Computational Fluid Dynamics

  • 이지헌 (연세대학교 화공생명공학과) ;
  • 이인규 (연세대학교 화공생명공학과) ;
  • 김현수 (국방과학연구소) ;
  • 박정수 (국방과학연구소) ;
  • 오민 (한밭대학교 화학생명공학과) ;
  • 문일 (연세대학교 화공생명공학과)
  • Lee, Jiheon (Dept. of Chemical&Biomolecular Engineering, Yonsei University) ;
  • Lee, Inkyu (Dept. of Chemical&Biomolecular Engineering, Yonsei University) ;
  • Kim, Hyunsoo (Dept. of Chemical Engineering, Hanbat University) ;
  • Park, Jungsoo (Dept. of Chemical Engineering, Hanbat University) ;
  • Oh, Min (Agency of Defense Development) ;
  • Moon, Il (Dept. of Chemical&Biomolecular Engineering, Yonsei University)
  • 투고 : 2017.11.13
  • 심사 : 2018.04.20
  • 발행 : 2018.04.30

초록

최근 환경문제로 인해 폭발성 폐기물을 안전하게 소각 처리하는 방법에 대한 연구가 활발히 진행되고 있다. 유동층 소각로를 이용한 처리 공정은 기존 방법보다 연소 가스 배출량이 현저하게 낮으며, 운전의 효율 또한 높다. 본 연구에서는, 폐 추진제 중 가장 많은 양이 폐기되고 있는 Double-based Propellant를 유동층 소각로에서 소각하는 공정을 전산유체역학 프로그램으로 모사하였다. Cylindrical Bed 내부에서 일어나는 7개의 연소 반응이 안전하게 모사되는 것을 확인하였다. 이를 바탕으로 실제 공정 설계를 진행하면, 앞으로 폭발성 폐기물 처리 공정 연구에 새로운 연구 방향을 제시할 것이라 사료된다.

Recently, many studies have focused on the explosive waste treatment in terms of the safety and environmental pollution. A combustion process using fluidized bed incinerator has several profits : continuous process, low pollutive gases such as NOx, and high process efficiency. This study focused on the design of the propellant combustion reactor by using computational fluid dynamics(CFD) simulation technique. As a result, the reactions are successfully simulated in cylindrical incinerator, and. The study will influence to the research about treatment of explosive wastes.

키워드

참고문헌

  1. 이지헌, 조성현, et al. "폭발성 폐기물 소각 공정 내 유동층 반응기 소각로의 Cold Model Simulation을 통한 최적 운전 조건 계산," Theories and Applications of Chemical Engineering, 22(1), p.727,April 2016.
  2. T.S. Roh, Tseng, Yang,."Effects of Acoustic Oscillations on Flame Dynamics of Homogeneous Propellants in Rocket Motors," Journal of Propulsion and Power Vol. 11, No. 4, July 1995.
  3. Song, Y. H., Beer, J. M., and Sarofim, A. F., "Reduction of Nitric Oxide by Coal Char at Temperatures of 1250-1750K," Combustion Science and Technology. Vol. 25, pp.237-240, 1981. https://doi.org/10.1080/00102208108547505
  4. Lengelle, G., Bizot, A., Duterque, J., and Trubert, J. F., "Steady-State Burning of Homogeneous Propellants," Fundamentals of Solid-Propellant Combustion, edited by K. K. Kuo and M. Summerfield, Vol. 90, Progress in Astronautics and Aeronautics, AIAA, New York, pp.361-407, 1984.
  5. Bizot, A., and Beckstead, M. W., "A model for Double-Base Propellant Combustion," Proceedings of the 22nd Symposium on Combustion, The combustion Inst., Pittsburgh, PA, pp. 1827-1834, 1988.
  6. Faddoul, F., Most, J. M., and Joulain, P., " Combustion Kinetic of a Homogeneous Double Base Propellant," Dynamics of Deflagrations and Reactive System-Flames, edited by A. L. Kuhl, Vol. 131, Progress in Astronautics and Aeronautics, AIAA, Washington, DC, pp. 275-296, 1989.
  7. Lengelle, G., Duterque, J., Godon, J. C., and Trubert, J. F., "Solid Propellant Steady Combustion:Physical Aspects," AGARD Lecture Series 180, 1991.
  8. Kubota. N., "Determination of Plateau Burning Effect of Catalyzed Double-Base Propellant," Proceedings of the 17th Symposium on Combustion,, The Combustion Inst., Pittsburgh, PA, pp. 1435-1441, 1979
  9. Aoki, I., and Kubota, N., "Combustion Wave Structures of High and Low-Energy Double-Base Propellants," AIAA Journal, Vol. 20, pp.100-105, 1982 https://doi.org/10.2514/3.51054