DOI QR코드

DOI QR Code

A SYMBOLIC POWER OF THE IDEAL OF A STANDARD 𝕜-CONFIGURATION IN 𝕡2

  • Shin, Yong-Su (Department of Mathematics, Sungshin Women's University)
  • Received : 2017.12.06
  • Accepted : 2018.02.21
  • Published : 2018.02.28

Abstract

In [4], the authors show that if ${\mathbb{X}}$ is a ${\mathbb{k}}-configuration$ in ${\mathbb{P}}^2$ of type ($d_1$, ${\ldots}$, $d_s$) with $d_s$ > $s{\geq}2$, then ${\Delta}H_{m{\mathbb{X}}}(md_s-1)$ is the number of lines containing exactly $d_s-points$ of ${\mathbb{X}}$ for $m{\geq}2$. They also show that if ${\mathbb{X}}$ is a ${\mathbb{k}}-configuration$ in ${\mathbb{P}}^2$ of type (1, 2, ${\ldots}$, s) with $s{\geq}2$, then ${\Delta}H_{m{\mathbb{X}}}(m{\mathbb{X}}-1)$ is the number of lines containing exactly s-points in ${\mathbb{X}}$ for $m{\geq}s+1$. In this paper, we explore a standard ${\mathbb{k}}-configuration$ in ${\mathbb{P}}^2$ and find that if ${\mathbb{X}}$ is a standard ${\mathbb{k}}-configuration$ in ${\mathbb{P}}^2$ of type (1, 2, ${\ldots}$, s) with $s{\geq}2$, then ${\Delta}H_{m{\mathbb{X}}}(m{\mathbb{X}}-1)=3$, which is the number of lines containing exactly s-points in ${\mathbb{X}}$ for $m{\geq}2$ instead of $m{\geq}s+1$.

Keywords

References

  1. C. Bocci & B. Harbourne: Comparing powers and symbolic powers of ideals. J. Alge-braic Geom. 19 (2010), no. 3, 399-417. https://doi.org/10.1090/S1056-3911-09-00530-X
  2. S. Cooper, B. Harbourne & Z. Teitler: Combinatorial bounds on Hilbert functions of fat points in projective space. J. Pure Appl. Algebra 215 (2011), 2165-2179. https://doi.org/10.1016/j.jpaa.2010.12.006
  3. F. Galetto, Anthony V. Geramita, Y.S. Shin & A. Van Tuyl: The Symbolic Defect of an Ideal. In preparation.
  4. F. Galetto, Y.S. Shin & A. Van Tuyl: Distinguishing $\mathbb{k}$-configurations. In preparation.
  5. A.V. Geramita, B. Harbourne & J.C. Migliore: Star Configurations in $\mathbb{P}^n$. J. Algebra 376 (2013), 279-299. https://doi.org/10.1016/j.jalgebra.2012.11.034
  6. A.V. Geramita, B. Harbourne, J.C. Migliore & U. Nagel: Matroid Configurations and Symbolic Powers of Their Ideals. In preparation.
  7. A.V. Geramita, T. Harima & Y.S. Shin: An Alternative to the Hilbert function for the ideal of a finite set of points in $\mathbb{P}^n$. Illinois J. of Mathematics. 45 (2001), no. 1, 1-23.
  8. A.V. Geramita, T. Harima & Y.S. Shin: Extremal point sets and Gorenstein ideals. Adv. Math. 152 (2000), 78-119. https://doi.org/10.1006/aima.1998.1889
  9. L.G. Roberts & M. Roitman: On Hilbert functions of reduced and of integral algebras. J. Pure Appl. Algebra 56 (1989), 85-104. https://doi.org/10.1016/0022-4049(89)90123-0