DOI QR코드

DOI QR Code

Preparation of Hybrid Beads Containing Polysulfone Modified with Carbon Nanotubes, Tributyl Phosphate and Di-(2-ethylhexyl)-phosphoric Acid and Removal Characteristics of Sr(II)

Polysulfone에 Carbon Nanotubes, Tributyl Phosphate와 Di-(2-ethylhexyl)-phosphoric Acid를 고정화한 하이브리드 비드의 제조와 Sr(II)의 제거 특성

  • Kam, Sang-Kyu (Department of Environmental Engineering, Jeju National University) ;
  • Suh, Jung-Ho (Department of Environmental & Chemical Industry, Ulsan College) ;
  • Yun, Jong-Won (Department of Biotechnology, Daegu University) ;
  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyoung National University)
  • 감상규 (제주대학교 환경공학과) ;
  • 서정호 (울산과학대학교 환경화학공업과) ;
  • 윤종원 (대구대학교 생명공학과) ;
  • 이민규 (부경대학교 화학공학과)
  • Received : 2017.12.27
  • Accepted : 2018.02.09
  • Published : 2018.06.10

Abstract

PSf/D2EHPA/TBP/CNTs beads were prepared by immobilizing carbon nanotubes (CNTs) and two extractants, di-(2-ethylhexyl)-phosphoric acid (D2EHPA) and tributyl phosphate (TBP) on polysulfone (PSf). The prepared PSf/D2EHPA/TBP/CNTs beads were characterized by SEM, TGA, and FTIR. The removal rate of Sr(II) by PSf/D2EHPA/TBP/CNTs beads was well described by the pseudo-second-order kinetic model. The maximum removal capacity of Sr(II) obtained from Langmuir isotherm was found to be 5.52 mg/g. The results showed that the removal efficiency of Sr(II) by PSf/D2EHPA/CNTs beads prepared in this study was significantly improved compared to that of using PSf/D2EHPA/CNTs beads without TBP.

Polysulfone (PSf)에 탄소 나노 튜브(CNTs, carbon nano tubes)와 두 가지 추출제, di-(2-ethylhexyl)-phosphoric acid (D2EHPA)와 tributyl phosphate (TBP)를 고정화시킨 PSf/D2EHPA/TBP/CNTs 비드를 제조하였다. 제조한 비드의 특성은 SEM, TGA 및 FTIR로 분석하였다. 제조한 PSF/D2EHPA/TBP/CNTs 비드에 의한 Sr(II)의 제거속도는 유사 2차 속도식에 의해 잘 설명되었으며, Langmuir 등온식으로 구한 Sr(II)의 최대 제거 용량은 5.52 mg/g이었다. 본 연구에서 제조한 PSf/D2EHPA/CNTs 비드에 의한 Sr(II)의 제거효율은 TBP가 첨가되지 않은 PSf/D2EHPA/CNTs 비드에 의한 Sr(II)의 제거효율 보다 크게 향상되는 결과를 나타내었다.

Keywords

References

  1. A. Ahmadpour, M. Zabihi, M. Tahmasbi, and T. R. Bastami, Effect of adsorbents and chemical treatments on the removal of strontium from aqueous solutions, J. Hazard. Mater., 182, 552-556 (2010). https://doi.org/10.1016/j.jhazmat.2010.06.067
  2. M. Wang, L. Xu, J. Peng, M. Zhai, J. Li, and G. Wei, Adsorption and desorption of Sr(II) ions in the gels based on polysaccharide derivates, J. Hazard. Mater., 171, 820-826 (2009). https://doi.org/10.1016/j.jhazmat.2009.06.071
  3. Z. Ren, W. Zhang, H. Meng, Y. M. Liu, and Y. Dai, Extraction equilibria of copper(II) with D2EHPA in kerosene from aqueous solutions in acetate buffer media, J. Chem. Eng. Data, 52, 438-441 (2007). https://doi.org/10.1021/je060370o
  4. D. Darvishi, D. F. Haghshenas, S. Etemadi, E. K. Alamdari, and S. K. Sadrnezhaad, Water adsorption in the organic phase for the D2EHPA-kerosene/water and aqueous $Zn^{2+}$, $Co^{2+}$, $Ni^{2+}$ sulphate systems, Hydrometallurgy, 88, 92-97 (2007). https://doi.org/10.1016/j.hydromet.2007.02.010
  5. N. E. Belkhouche, M. A. Didi, and D. Vellemin, Separation of nickel and copper by solvent extraction using di-2-ethyl-hexylphosphoric acid-based synergistic mixture, Solvent Extraction Ion Exch., 23, 677-693 (2005). https://doi.org/10.1081/SEI-200066290
  6. K. K. Sahu and R. P. Das, Synergistic extraction of iron(III) at higher concentrations in D2EHPA-TBP mixed solvent systems, Metall. Mater. Trans. B, 28(2), 181-189 (1997). https://doi.org/10.1007/s11663-997-0083-6
  7. F. D. Haghshenas, D. Darvishi, S. Etemadi, A. R. E. Hollagh, E. K. Alamdari, and A. A. Salardini, Interaction between TBP and D2EHPA during Zn, Cd, Mn, Cu, Co and Ni solvent extraction: A thermodynamic and empirical approach, Hydrometallurgy, 98, 143-147 (2009). https://doi.org/10.1016/j.hydromet.2009.04.010
  8. E. Vahidi, F. Rashchi, and D. Moradkhani, Recovery of zinc from an industrial zinc leach residue by solvent extraction using D2EHPA, Miner. Eng., 22, 204-206 (2009). https://doi.org/10.1016/j.mineng.2008.05.002
  9. N. A. Ochoa, C. Illanes, J. Marchese, C. Basualto, and F. Valenzuela, Preparation and characterization of polymeric microspheres for Cr(VI) extraction, Sep. Purif. Technol., 52, 39-45 (2006). https://doi.org/10.1016/j.seppur.2006.03.012
  10. M. Ciopec, C. M. Davidescu, A. Negrea, L. Lupa, P. Negrea, and A. Popa, Di-2-ethylhexyl phosphoric acid immobilization with polysulfone microcapsules for Cu(II) extraction, Chem. Bull., 56, 43-46 (2011).
  11. S. K. Kam, J. W. Jeon, and M. G. Lee, Removal of Cu(II) and Pb(II) by solid-phase extractant prepared by immobilizing D2EHPA with polysulfone, J. Environ. Sci. Int., 23(11), 1843-1850 (2014). https://doi.org/10.5322/JESI.2014.23.11.1843
  12. S. K. Kam, J. W. Jeon, and M. G. Lee, Removal characteristics of Sr(II) by solid-phase extractant prepared by immobilizing di-(2-ethylhexyl)phosphoric acid (D2EHPA) and tri-butyl-phosphate (TBP) in polysulfone, J. Environ. Sci. Int., 24(3), 267-274 (2015). https://doi.org/10.5322/JESI.2015.24.3.267
  13. C. H. Lee and M. G. Lee, Removal characteristics of Cu(II) by PSf/D2EHPA/CNT beads prepared by immobilization of carbon nanotubes (CNT) and di-(2-ethylhexyl)-phosphoric acid (D2EHPA) on polysulfone (PSf), J. Environ. Sci. Int., 25(11), 1485-1491 (2016). https://doi.org/10.5322/JESI.2016.25.11.1485
  14. G. Tae, J. A. Kornfield, and J. A. Hubbell, Sustained release of human growth hormone from in situ forming hydrogels using self-assembly of fluoroalkyl-ended poly(ethylene glycol), Biomaterials, 26, 5259-5266 (2005). https://doi.org/10.1016/j.biomaterials.2005.01.042
  15. O. Kebiche-Senhadji, L. Mansouri, S. Tingry, P. Seta, and M. Benamor, Facilitated Cd(II) transport across CTA polymer inclusion membrane using anion (Aliquat 336) and cation (D2EHPA) metal carriers, J. Memb. Sci., 310(1-2), 438-445 (2008). https://doi.org/10.1016/j.memsci.2007.11.015
  16. K. K. Yadav, D. K. Singh, M. Anitha, L. Varshney, and H. Singh, Studies on separation of rare earths from aqueous media by polyethersulfone beads containing D2EHPA as extractant, Sep. Purif. Technol., 118, 350-358 (2013). https://doi.org/10.1016/j.seppur.2013.07.012
  17. S. Ozcan, A. Tor, and M. E. Aydin, Removal of Cr(VI) from aqueous solution by polysulfone microcapsules containing Cyanex 923 as extraction reagent, Desalination, 259, 179-186 (2010). https://doi.org/10.1016/j.desal.2010.04.009
  18. Y. X. Ma, Y. F. Li, L. Q. Yang, and G. H. Zhao, Preparation and characterization of polysulfone/graphite nanosheets composites capsules for the adsorption of phenol in aqueous solution, Polym. Compos., 34(2), 204-213 (2013). https://doi.org/10.1002/pc.22405
  19. Y. H. Li, Z. C. Di, Z. K. Luan, J. Ding, H. Zuo, X. Q. Wu, C. L. Xu, and D. H. Wu, Removal of heavy metals from aqueous solution by carbon nanotubes: adsorption equilibrium and kinetics, J Environ. Sci., 16(2), 208-211 (2004).
  20. S. Vellaichamy and K. Palanivelu, Preconcentration and separation of copper, nickel and zinc in aqueous samples by flame atomic absorption spectrometry after column solid-phase extraction onto MWCNTs impregnated with D2EHPA-TOPO mixture, J. Hazard. Mater., 185, 1131-1139 (2011). https://doi.org/10.1016/j.jhazmat.2010.10.023
  21. M. G. Lee, J. W. Yoon, and J. H. Suh, Preparation of PSf/D2EHPA/CNTs beads immobilized with carbon nanotube (CNTs) and di-(2-ethylhexyl)-phosphoric acid (D2EHPA) on polysulfone (PSf) and removal characteristics of Sr(II), Korean Chem. Eng. Res., 55(6), 854-860 (2017). https://doi.org/10.9713/KCER.2017.55.6.854
  22. F. C. Wu, R. L. Tseng, and R. S. Juang, Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan, Water Res., 35(3), 613-618 (2001). https://doi.org/10.1016/S0043-1354(00)00307-9
  23. A. M. El-Kamash, A. A. Zaki, and M. A. El Geleel, Modeling batch kinetics and thermodynamics of zinc and cadmium ions removal from waste solutions using synthetic zeolite A, J. Hazard. Mater., B127, 211-220 (2005).