DOI QR코드

DOI QR Code

Large-Scale Graphene Production Techniques for Practical Applications

  • Bae, Sukang (Applied Quantum Composites Research Center, Korea Institute of Science and Technology) ;
  • Lee, Seoung-Ki (Applied Quantum Composites Research Center, Korea Institute of Science and Technology) ;
  • Park, Min (Photoelectronic Hybrid Research Center, Korea Institute of Science and Technology)
  • Received : 2018.07.09
  • Accepted : 2018.09.12
  • Published : 2018.09.30

Abstract

Many studies have been conducted on large-scale graphene synthesis by chemical vapor deposition. Furthermore, numerous researchers have attempted to develop processes that can continuously fabricate uniform and high-quality graphene. To compete with other types of carbon materials (carbon black, carbon fiber, carbon nanotubes, and so on), various factors, such as price, mass manufacturing capability, and quality, are crucial. Thus, in this study, we examine various large-scale graphene production methods focusing on cost competitiveness and productivity improvements for applications in various fields.

Keywords

Acknowledgement

Supported by : Korea Institute of Science and Technology (KIST)

References

  1. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg. J. Hone, P. Kim, and H. L. Stomer, Solid State Commun. 146, 351 (2008). https://doi.org/10.1016/j.ssc.2008.02.024
  2. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Phys. Rev. Lett. 100, 016602 (2008). https://doi.org/10.1103/PhysRevLett.100.016602
  3. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrahan, F. Miao, and C. N. Lau, Nano Lett. 8, 902 (2008). https://doi.org/10.1021/nl0731872
  4. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008). https://doi.org/10.1126/science.1157996
  5. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Adv. Mater. 22, 3906 (2010). https://doi.org/10.1002/adma.201001068
  6. R. E. Peierls, Ann. I. H. Poincare 5, 177 (1935).
  7. L. D. Landau, Phys. Z. Sowjetunion 11, 26 (1937).
  8. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004). https://doi.org/10.1126/science.1102896
  9. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. 102, 10451 (2005). https://doi.org/10.1073/pnas.0502848102
  10. D. Shin, S. Bae, C. Yan, J. Kang, J. Ryu, J. -H. Ahn, and B. H. Hong, Carbon Lett. 1, 1 (2012).
  11. S. Bae, S. J. Kim, D. Shin, J. -H. Ahn, and B. H. Hong, Phys. Scr. T146, 014024 (2012). https://doi.org/10.1088/0031-8949/2012/T146/014024
  12. G. Eda, G. Fanchini, and M. Chhowalla, Nat. Nanotech. 3, 270 (2008). https://doi.org/10.1038/nnano.2008.83
  13. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, Nature 448, 457 (2007). https://doi.org/10.1038/nature06016
  14. S. Stankovich, D. A. Dikin, G. H. B. Dommett,K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature 442, 282 (2006). https://doi.org/10.1038/nature04969
  15. D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, Nat. Nanotech. 3, 101 (2008). https://doi.org/10.1038/nnano.2007.451
  16. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. -H. Ahn, P. Kim, J. -Y. Choi, and B. H. Hong, Nature 457, 706 (2009). https://doi.org/10.1038/nature07719
  17. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovi, M. S. Dresselhaus, and J. Kong, Nano Lett. 9, 30 (2009). https://doi.org/10.1021/nl801827v
  18. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312 (2009). https://doi.org/10.1126/science.1171245
  19. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, Nano Lett. 9, 4359 (2009). https://doi.org/10.1021/nl902623y
  20. P. Sutter, J. T. Sadowski, and E. Sutter, Phys. Rev. B 80, 4759 (2009).
  21. H. Ago, Y. Ito, N. Mizuta, K. Yoshida, B. Hu, C. M. Orofeo, M. Tsuji, K. Ikeda, and S. Mizuno, ACS Nano 4, 7407 (2010). https://doi.org/10.1021/nn102519b
  22. J. Coraux, A. T. N'Diaye, M. Engler, C. Busse, D. Wall, N. Buckanie, F. -J. M. Heringdorf, R. V. Gastel, B. Poelsema, and T. Michely, New J. Phys. 11, 023006 (2009). https://doi.org/10.1088/1367-2630/11/2/023006
  23. P. W. Sutter, J. -I. Flege, and E. A. Sutter, Nat. Mater. 7, 406 (2008). https://doi.org/10.1038/nmat2166
  24. T. Oznuluer, E. Pince, E. O. Polat, O. Balci, O. Salihoglu, and C. Kocabas, Appl. Phys. Lett. 98, 183101 (2011). https://doi.org/10.1063/1.3584006
  25. X. Liu, L. Fu, N. Liu, T. Gao, Y. Zhang, L. Liao, and Z. Liu, J. Phys. Chem. C 115, 11976 (2011). https://doi.org/10.1021/jp202933u
  26. B. Dai, L. Fu, Z. Zou, M. Wang, H. Xu, S. Wang, and Z. Liu, Nat. Commun. 2, 522 (2011). https://doi.org/10.1038/ncomms1539
  27. Q. Yu, J. Lian, S. Siriponglert, Y. P. Chen, and S. S. Pei, Appl. Phys. Lett. 93, 113103 (2008). https://doi.org/10.1063/1.2982585
  28. X. Li, W. Cai, L. Colombo, and R. S. Ruoff, Nano Lett. 9, 4268 (2009). https://doi.org/10.1021/nl902515k
  29. R. Vitchev, A. Malesevic, R. H. Petrov, R. Kemps, M. Mertens, A. Vanhulsel, and C. V. Haesendonck, Nanotechnology 21, 095602 (2010). https://doi.org/10.1088/0957-4484/21/9/095602
  30. Y. Kim, W. Song, S. Y. Lee, C. Jeon, W. Jung, M. Kim, and C. -Y. Park, Appl. Phys. Lett. 98, 263106 (2011). https://doi.org/10.1063/1.3605560
  31. J. -K. Lee, H. -J. Chung, J. Heo, S. Seo, I. H. Cho, H. -I. Kwon, and J. -H. Lee, Appl. Phys. Lett. 98, 193504 (2011). https://doi.org/10.1063/1.3589120
  32. J. Kim, M. Ishiharta, Y. Koga, K. Tsugawa, M. Hasegawa, and S. Iijima, Appl. Phys. Lett. 98, 091502 (2011). https://doi.org/10.1063/1.3561747
  33. S. Bae, H. Kim, Y. Lee, X. Xu, J. -S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. -J. Kim, K. S. Kim, B. Ozyilmaz, J. -H. Ahn, B. H. Hong, and S. Iijima, Nat. Nanotech. 5, 574 (2010). https://doi.org/10.1038/nnano.2010.132
  34. T. Hesjedal, Appl. Phys. Lett. 98, 133106 (2011). https://doi.org/10.1063/1.3573866
  35. E. S. Polsen, D. Q. Mcnerny, B. Viswanath, S. W. Pattinson, and A. J. Hart, Sci. Rep. 5, 10257 (2015). https://doi.org/10.1038/srep10257
  36. T. Kobayashi, M. Bando, N. Kimura, K. Shimizu, K. Kadono, N. Umezu, K. Miyahara, S. Haytazaki, S. Nagai, Y. Mizuguchi, Y. Murakami, and D. Hobara, Appl. Phys. Lett. 102, 023112 (2013). https://doi.org/10.1063/1.4776707
  37. T. Yamada, M. Ishihara, J. Kim, M. Hasegawa, and S. Iijima, Carbon 50, 2615 (2012). https://doi.org/10.1016/j.carbon.2012.02.020
  38. G. Zhong, X. Wu, L. D'Arsie, K. B. K. Teo, N. L. Rupesinghe, A. Jouvray, and J. Robertson, Appl. Phys. Lett. 109, 193103 (2016). https://doi.org/10.1063/1.4967010
  39. J. Ryu, Y. Kim, D. Won, N. Kim, J. S. Park, E. -K. Lee, D. Cho, S. -P. Cho, S. J. Kim, G. H. Ryu, H. -A. S. Shin, Z. Lee, B. H. Hong, and S. Cho, ACS Nano 8, 950 (2014). https://doi.org/10.1021/nn405754d
  40. S. Kang, K. Lim, H. Park, J. B. Park, S. C. Park, S. -P. Cho, K. Kang, and B. H. Hong, ACS Appl. Mater. Interfaces 10, 1033 (2018). https://doi.org/10.1021/acsami.7b13741
  41. L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu, and P. M. Ajayan, Nat. Mater. 9, 430 (2010). https://doi.org/10.1038/nmat2711
  42. G. Zhou, G. Pan, L. Wei, T. Li, and F. Zhang, RSC Adv. 6, 93855 (2016). https://doi.org/10.1039/C6RA20496A
  43. A. Kasry, M. A. Kuroda, G. J. Martyna, G. S. Tulevski, and A. A. Bol, ACS Nano 4, 3839 (2010). https://doi.org/10.1021/nn100508g
  44. S. -J. Kwon, T. -H. Han, T. Y. Ko, N. Li, Y. Kim, D. J. Kim, S. -H. Bae, Y. Yang, B. H. Hong, K. S. Kim, S. Ryu, and T. -W. Lee, Sci. Rep. 9, 2037 (2018).
  45. S. -H. Bae, O. Kahya, B. K. Sharma, J. Kwon, H. J. Cho, B. Ozyilmaz, and J. -H. Ahn, ACS Nano 7, 3130 (2013). https://doi.org/10.1021/nn400848j
  46. M. Bokdam, P. A. Khomyakov, G. Brocks, Z. Zhong, and P. J. Kelly, Nano Lett. 11, 4631 (2011). https://doi.org/10.1021/nl202131q