DOI QR코드

DOI QR Code

Carbon strain sensor using Nd: YAG laser Direct Writing

Nd:YAG Laser 직접 각인을 이용한 Carbon 스트레인 센서

  • Joo, Donghyun (Convergence Institute of Biomedical Engineering and Biomaterial, Seoul National University of Science and Technology) ;
  • Yoon, Sangwoo (Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology) ;
  • Kim, Joohan (Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology) ;
  • Park, Woo-Tae (Convergence Institute of Biomedical Engineering and Biomaterial, Seoul National University of Science and Technology)
  • 주동현 (서울과학기술대학교 의공학-바이오소재 융합협동과정) ;
  • 윤상우 (서울과학기술대학교 기계자동차공학과) ;
  • 김주한 (서울과학기술대학교 기계자동차공학과) ;
  • 박우태 (서울과학기술대학교 의공학-바이오소재 융합협동과정)
  • Received : 2018.03.19
  • Accepted : 2018.03.25
  • Published : 2018.03.31

Abstract

Nd:YAG laser was used to carbonize polyimide films to produce carbon films. This is a simple manufacturing process to fabricate low cost sensors. By applying this method, we studied characteristics of flexible and low-cost piezoresistive. Previously, many studies focused on carbonization of polyimide using $CO_2$ laser with wavelength of $10.6{\mu}m$. In this paper, carbonization (carbonization process) was performed on polyimide films using an Nd:YAG laser with a wavelength of $1.064{\mu}m$. In order to increase the resolution, we optimized the laser conditions of the power density ($W/cm^2$) and the beam scan rate. In previous studies using $CO_2$ laser, the minimum line width was $140{\sim}220{\mu}m$ but in this study, carbon line width was reduced to $35{\sim}40{\mu}m$. The initial sheet resistance of the carbon sensor was $100{\sim}300{\Omega}/{\square}$. The resistance decreased by 30% under stretched with a curvature radius of 21 R. The calculated gauge factor was 56.6. This work offers a simple, highly flexible, and low-cost process to fabricate piezoresistive sensors.

Nd:YAG Laser를 이용하여 polyimide film에 탄화(carbonization)를 진행하여 Carbon을 생성하여 저가의 센서를 간단한 제조과정으로 만들었다. 이를 통하여 유연한 저가형 압저항 센서의 특성에 관한 연구를 수행하였다. 기존에 많은 연구들이 Polyimide에 $10.6{\mu}m$의 파장을 가지는 $CO_2$ laser를 이용하여 carbonization을 하여 센서를 제작하였다. 본 논문에서는 polyimide film에 $1.064{\mu}m$의 파장을 가지는Nd:YAG laser를 이용하여 carbonization(탄화공정)을 진행하였다. 또한 Nd:YAG laser를 사용하여 polyimide film위에 직접 탄화시키며 carbon을 생성하는 최적의 전력밀도($W/cm^2$)과 속도(scan rate) 조건 조합을 찾아 해상도를 높였다. $CO_2$ laser를 사용하였던 기존의 선행연구에서는 carbon생성의 최소 선폭이 $140{\sim}220{\mu}m$의 길이를 가졌지만, 본 연구에서는 카본의 생성되는 선폭이 $35{\sim}40{\mu}m$으로 축소시켰다. 이번 연구에서 제작된 센서의 초기 면저항은 $100{\sim}300{\Omega}/{\square}$ 이였다. 곡률 반경 21 R 로 인장을 하였을 때 저항이 30% 줄어들었고, 이를 통하여 계산된 게이지 팩터는 56.6이였다. 본 연구는 압저항 센서를 제조하기 위한 단순하고, 매우 유연하고 저렴한 공정을 제공한다.

Keywords

References

  1. J. W. Ihm, D.-k. Choi, and H. Ryu, "The Characteristic of Prepared Eletrode Catalyst and MEA using CNF and CNT", J. Microelectron. Packag. Soc., 11(1), 59 (2004).
  2. T. W. Lee, H. S. Lee, and H. H. Park, "A Study on the Electrical Resistivity of Graphene Added Carbon Black Composite Electrode with Tensile Strain", J. Microelectron. Packag. Soc., 22(1), 55 (2015). https://doi.org/10.6117/kmeps.2015.22.1.055
  3. J.-J. Wang, M.-Y. Lin, H.-Y. Liang, R. Chen, and W. Fang, "Piezoresistive nanocomposite rubber elastomer for stretchable MEMS sensor", Proc. 29th International Conference on Micro Electro Mechanical Systems (MEMS), Shanghai, China, 550, IEEE (2016).
  4. F. Michelis, L. Bodelot, Y. Bonnassieux, and B. Lebental, "Highly reproducible, hysteresis-free, flexible strain sensors by inkjet printing of carbon nanotubes", Carbon, 95, 1020 (2015). https://doi.org/10.1016/j.carbon.2015.08.103
  5. S. Yao, and Y. Zhu, "Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires", Nanoscale, 6(4), 2345 (2014). https://doi.org/10.1039/c3nr05496a
  6. B. Y. Lee et al., "Biomechanical Parameters in Arch Building Gait Measured by Gait Analysis System with Pressure Sensor", The Korean Journal of Sports Medicine, vol. 34, no. 1, (2016).
  7. L. Cai, L. Song, P. Luan, Q. Zhang, N. Zhang, Q. Gao, D. Zhao, X. Zhang, M. Tu, F. Yang, W. Zhou, Q. Fan, J. Luo, W. Zhou, P. M. Ajayan, and S. Xie, "Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection", Sci. Rep., 3, 3048 (2013). https://doi.org/10.1038/srep03048
  8. H. Tian, Y. Shu, X.-F. Wang, M. A. Mohammad, Z. Bie, Q.-Y. Xie, C. Li, W.-T. Mi, Y. Yang, and T.-L. Ren, "A graphenebased resistive pressure sensor with record-high sensitivity in a wide pressure range", Sci. Rep., 5, 8603 (2015). https://doi.org/10.1038/srep08603
  9. J. H. Lee, S. H. Kim, J. J. Lee, D. J. Yang, B. C. Park, S. H. Ryu, and I. K. Park, "A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection", Nanoscale, 6(20), 11932 (2014). https://doi.org/10.1039/C4NR03295K
  10. X. Chang, S. Sun, S. Sun, T. Liu, X. Xiong, Y. Lei, L. Dong, and Y. Yin, "ZnO nanorods/carbon black-based flexible strain sensor for detecting human motions", Journal of Alloys and Compounds, 738, 111 (2018). https://doi.org/10.1016/j.jallcom.2017.12.094
  11. S. Luo, P. T. Hoang, and T. Liu, "Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays", Carbon, 96, 522 (2016). https://doi.org/10.1016/j.carbon.2015.09.076
  12. S. W. Kim, Y. Lee, J. Park, S. Kim, H. Chae, H. Ko, and J. J. Kim, "A Triple-Mode Flexible E-Skin Sensor Interface for Multi-Purpose Wearable Applications", Sensors (Basel), 18(1), 78 (2017). https://doi.org/10.3390/s18010078
  13. J. Cao, C. Lu, J. Zhuang, M. Liu, X. Zhang, Y. Yu, and Q. Tao, "Multiple Hydrogen Bonding Enables the Self-Healing of Sensors for Human-Machine Interactions", Angewandte Chemie International Edition, 56(30), 8795 (2017). https://doi.org/10.1002/anie.201704217
  14. Y. Lu, H. Lyu, A. G. Richardson, T. H. Lucas, and D. Kuzum, "Flexible Neural Electrode Array Based-on Porous Graphene for Cortical Microstimulation and Sensing", Sci. Rep., 6, 33526 (2016). https://doi.org/10.1038/srep33526
  15. Z. B. Hughes, R. Rahimi, M. Ochoa, and B. Ziaie, "Rapid prototyping of piezoresistive MEMS sensors via a single-step laser carbonization and micromachining process", Proc. 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, USA, 1287, IEEE (2015).
  16. D. H. Ahn, B.G. Bak, D. E. Kim, and D. S. Kim, "Analysis of Polymer Carbonization using Lasers and its Applications for LCD Manufacturing Process", Korean Society for Precision Engineering, 27(6), 24 (2010).
  17. J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E. L. G. Samuel, M. J. Yacaman, B. I. Yakobson, and J. M. Tour, "Laserinduced porous graphene films from commercial polymers", Nature Communications, 5, 5714 (2014). https://doi.org/10.1038/ncomms6714
  18. S. Wang, Y. Yu, R. Li, G. Feng, Z. Wu, G. Compagnini, A. Gulino, Z. Feng, and A. Hu, "High-performance stacked inplane supercapacitors and supercapacitor array fabricated by femtosecond laser 3D direct writing on polyimide sheets", Electrochimica Acta, 241, 153 (2017). https://doi.org/10.1016/j.electacta.2017.04.138

Cited by

  1. 레이저 유도에 의한 그래핀 합성 및 전기/전자 소자 제조 기술 vol.28, pp.1, 2018, https://doi.org/10.6117/kmeps.2021.28.1.001