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Abstract 
 

In this paper, a novel background prior-based salient object detection framework is proposed 
to deal with images those are more complicated. We take the superpixels located in four 
borders into consideration and exploit a mechanism based on image boundary information to 
remove the foreground noises, which are used to form the background prior. Afterward, an 
initial foreground prior is obtained by selecting superpixels that are the most dissimilar to the 
background prior. To determine the regions of foreground and background based on the prior 
of them, a threshold is needed in this process. According to a fixed threshold, the remaining 
superpixels are iteratively assigned based on their proximity to the foreground or background 
prior. As the threshold changes, different foreground priors generate multiple different 
partitions that are assigned a likelihood of being foreground. Last, all segments are combined 
into a saliency map based on the idea of similarity voting. Experiments on five benchmark 
databases demonstrate the proposed method performs well when it compares with the 
state-of-the-art methods in terms of accuracy and robustness. 
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1. Introduction 

Human saliency is usually referred as local contrast [1]. It typically originates from contrasts 
between an item and its surroundings, such as differences in color, texture, shape, etc. This 
mechanism measures intrinsically salient stimuli to the vision system that primarily attracts 
human attention in the early stage of visual exposure to an input image [2]. Intermediate and 
higher visual processes may automatically judge the importance of different regions of the 
image, and conduct detailed processes only on the “salient objects” that mostly related to the 
current tasks, while neglecting the remaining “background” regions [3]. The detection of such 
salient objects in the image is of significant importance, as it directs the limited computational 
resources to faster solutions in the subsequent image processing and analysis [4]. There are 
many applications for salient object detection, for example, visual tracking [5], object 
retargeting [6-7], image categorization [8] and image segmentation[9], and so forth. 

From the perspective of information processing mechanisms, existing saliency estimation 
algorithms can be broadly categorized as either bottom-up approaches [10-30] or top-down 
approaches [31-35]. Bottom-up methods are usually based on low-level visual information, 
and are more effective in detecting fine details rather than global shape information. In 
contrast, top-down saliency models are able to detect objects of certain sizes and categories 
based on more representative features from training samples. Since the bottom-up strategy of 
saliency detection is pre-attentive and data-driven and therefore has been widely applied. It is 
usually fast to execute and easy to adapt to various cases compared with top-down approaches. 
In this paper, we focus on bottom-up salient object detection. 

All bottom-up saliency methods rely on some prior knowledge about salient objects and 
backgrounds, such as contrast, compactness, etc. Different saliency methods characterize the 
prior knowledge from different perspectives. The most widely utilized assumption is that 
appearance contrasts between objects and their surrounding regions are high. This is called 
contrast prior and is used in almost all saliency methods. As a pioneer, Itti et al. [1] extract 
center-surround contrast at multiple spatial scales to find the prominent region. Bruce et al. 
[10] exploit Shannons self-information measure in local context to compute saliency. 
However, the local contrast does not consider the global influence and only stands out at object 
boundaries. Region contrast based methods [4,11] first segment the image and then compute 
the global contrast of those segments as saliency, which can usually highlight the entire object. 
Fourier spectrum analysis is used to detect visual saliency [12-13]. Recently, Perazzi et al. [14] 
unify the contrast and saliency computation into a single high-dimensional Gaussian filtering 
framework.  

Besides contrast prior, several recent approaches [15-17] exploit boundary prior [18], i.e., 
image boundary regions are mostly backgrounds, to enhance saliency computation. Such 
methods achieve state-of-the-art results, suggesting that boundary prior is effective. For 
example, Wei et al. [16] exploit background priors and geodesic distance for saliency 
detection. Yang et al. [17] cast saliency detection into a graph-based ranking problem, which 
performs label propagation on a sparsely connected graph to characterize the overall 
differences between salient object and background. However, we observe two drawbacks. The 
first is they simply treat all image boundaries as background. This is fragile and may fail even 
when the object only slightly touches the boundary. The second is their usage of boundary 
prior is mostly heuristic. It is unclear how it should be integrated with other cues for saliency 
computation.  
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In this paper, we propose a background prior based salient object detection method (BPS for 
short), which exploits an adaptive figure-ground classification method [18] to classify the 
object from background, to make the salient object pop-out automatically in given image. The 
block diagram of proposed algorithm is shown in Fig. 1. The new framework can be divided 
into four steps. First, an initial segmentation, i.e., SLIC [19], is required to partition the image 
into homogeneous regions for measuring saliency. Second, to generate background prior, we 
take the superpixels located in four borders into consideration and exploit a mechanism based 
on image boundary information to remove the foreground noises. These superpixels are used 
to form the background prior. Then, an initial foreground prior is obtained by selecting 
superpixel that is the most dissimilar to the background prior. To classify the superpixel into 
the foreground and the background, a threshold is used. According to the threshold, the 
remaining superpixels are iteratively assigned based on their proximity to the foreground or 
background prior, with the foreground prior being updated with new superpixels. As the 
threshold changes, different foreground priors generate multiple soft-label partitions that are 
not explicitly assigned a foreground or background label, but instead assigned a likelihood of 
being foreground, based on foreground likelihood of preceding labeled patches. Last, based on 
the idea of similarity voting, all soft-label partitions are combined into a saliency map. 
 

 
Fig. 1. Main steps of the proposed approach 

 
In summary, the contributions of this paper include: (1) A novel salient object detection 

algorithm is proposed that is based on background prior and adaptive figure-ground 
classification. Exploiting figure-ground classification, the superpixels of the given image can 
be classified into background and foreground, which fulfill the goal of salient object detection 
effectively. (2) A method of background prior selection is designed for salient object detection 
in the proposed algorithm. Unlike conventional methods that use a problematic boundary as 
the prior of the background in saliency estimation, BPS algorithm optimizes the boundary 
influences by locating and eliminating erroneous boundaries before the saliency detection. 

The remainder of the paper is organized as follows: Section 2 reviews related work that is 
related to our approach. We demonstrate framework of our saliency detection method in detail 
in Section 3. Then, we demonstrate our experimental results based on five public image 
datasets and compare the results with other state-of-art saliency detection methods in Section 4. 
The final section concludes the paper by summarizing our findings. 
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2. Related Work 
Saliency estimation methods can be explored from different perspectives. Regarding the early 
problem of fixation prediction, Itti et al. [1] propose a well-known saliency model which is 
implemented based on the biological attention mechanisms and feature integration theories. In 
this model, elementary features, e.g., color and luminance computed from different scales, are 
integrated using a center-surround operator to generate the saliency map, in which visually 
salient points are highlighted, as the prediction of fixations. After that, a number of fixation 
prediction models are proposed (e.g., [12,20]). A comprehensive survey on the fixation 
prediction models can be found in [21]. 

Concerning the salient object detection problem, which is the focus of this paper, in [22] it 
is defined as a binary segmentation problem for application to object recognition. Since then, 
plenty of saliency models are proposed for detecting salient objects in images based on various 
theories and principles, such as information theory [23], graph theory [17,24-25], statistical 
modeling [26-28], low-rank matrix recovery [29-30], partial differential equations [31], and 
machine learning [32-34]. Moreover, a variety of priors are explored to achieve a higher 
performance of salient object detection, e.g., center prior [35], boundary connectivity prior 
[16,36], focusness prior [37,38], objectness prior [38,39] and background prior [17,24,31,40].  

Some early works use the so called center prior to bias the image center region with higher 
saliency. Usually, center prior is realized as a gaussian fall-off map. It is either directly 
combined with other cues as weights [33,41,26], or used as a feature in learning-based 
methods [15]. This makes strict assumptions about the object size and location in the image.  

However, center prior alone is not very effective. The other most commonly used cue is 
based on the assumption that most photographers do not crop the salient object along the view 
frame. Hence the image boundary forms the background. However boundary prior is fragile 
and it’s prone to fail even when the object is slightly touching the background. Considering the 
connectivity of regions in the background, Wei et al. [16] define each region’s saliency value 
as the shortest-path distance towards the boundary. In [15], the contrast against image 
boundary is used as a new regional feature vector to characterize the background. In [17], 
Yang et al. compute the saliency of image regions according to their relevance to boundary 
patches via manifold ranking. Recently, Zhu et al. [36] propose a boundary connectivity 
measure that utilizes both contrast prior and boundary prior. Foreground and Background 
weights obtained are then combined using an optimization framework. 

Objectness proposal generation methods propose small number of windows which are 
likely to contain the object in an image thereby reducing search space for classifiers. Alexe et 
al. [42] propose an objectness measure that combines several image cues measuring an 
object’s characteristics in a Bayesian framework. Zhang et al. [43] propose cascaded ranking 
SVM to generate an ordered set of proposals. Cheng et al. [44] proposes a binarized version of 
normed gradient features (BING) which can be tested using few atomic operations to generate 
Objectness proposals. Jiang et al [37] integrate Objectness with Uniqueness and Focusness to 
obtain saliency maps. However these maps are not smooth and it is difficult to attribute these 
results to specific algorithm properties [14].  

It is also worth noting that there are some previous works involving forground-background 
classification in saliency detection [45,46]. In [45], Gopalakrishnan et al. exploit the hitting 
time on the fully connected graph and the sparsely connected graph to find the most salient 
seeds, based on which some background seeds are determined again. They then use the 
difference of the hitting times to the two kinds of seeds to compute the saliency for each node. 
However, the hitting time based saliency measure prefers to highlight the global rare regions 



1268                            Zhou et al.: Background Prior-based Salient Object Detection via Adaptive Figure-Ground Classification 

and does not suppress the backgrounds very well, thereby decreasing the overall saliency of 
objects. BL [46], which exploits both weak and strong bootstrap learning models, integrates 
multiscale saliency maps to improve the detection performance. In weak bootstrap learning, 
they compute a weak contrast-based saliency map based on superpixels of an input image. In 
strong bootstrap learning, a strong classifier based on Multiple Kernel Boosting is learned to 
measure saliency where three feature descriptors are extracted and four kernels are used to 
exploit rich feature representations. However, it makes the algorithm cannot suppress the 
noise in the background and preserve the object boundary well. In contrast, BPS focuses on the 
background prior and exploit the dissimilarities between the background prior and the rest 
superpixels to generate multiple soft-label partitions. To form saliency map from soft-label 
partitions, BPS uses the idea of similarity voting. From this point of view, BPS is similar to the 
multiscale saliency detection, for one, [46]. 

3. Proposed Salient Object Detection 
In this section, we describe BPS algorithm which is based on adaptive figure-ground 
classification and background prior propagation in detail. Since BPS is mainly divided into 
four steps, this section introduces BPS by four points as following: 1) Initial background prior, 
which present a mechanism based on image boundary information to remove the foreground 
noises and select background seeds from the border superpixels; 2) Similarity measure 
between patches that defines a suitable dissimilarity measure between two patches, and 
between a patch and a region; 3) Soft-label partitions section describes assigning each image 
patch a likelihood (soft-label) of belonging to the foreground category. In final subsection, we 
exploit the methods aforementioned to form the new salient object detection framework. 

3.1 Initial Background Prior 
Due to the advantages in information transfer and computational efficiency, BPS first 
segments the input image into superpixels for salient object detection. Since the background 
priors are so important for the new framework, in this subsection, we first discuss how to 
obtain the priors in given image. 

In the conventional problems of background-based salient object detection, the 
background priors are manually labeled with the ground truth. Recently, the cues in bottom-up 
saliency detection have gained much popularity [34]. Different proposals include measures of 
pixel contrast [33], various implementations [4,33] of the discriminant center-surround 
saliency principle of [47] on the graph-based saliency model of [48]. Although several seed 
mechanisms have been proposed in the literature, they tend to be heuristic in nature, e.g. 
selecting the superpixels that most differ from those along the image border. They simply treat 
all image boundaries as background. Nevertheless, some of them maybe incorrect that there 
may be some foreground noises in the border regions, leading to negative effects on saliency 
detection. Since they have insignificant effects on the final results, a mechanism based on 
image boundary information is proposed to remove the foreground noises and selected 
background seeds from the border superpixels. 

Next, some examples are given to illustrate the selection of background prior, which are 
shown in Fig. 2. As an input image is over-segmented into 200 superpixels as shown in Fig.  
2(b), the superpixels are selected as the border set whose centroids locate within a certain 
number of pixels to the image borders. Since the most distinct boundary of an image is likely 
to be the contour between the object and background, we can roughly remove the image 
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superpixels with strong boundaries (see Fig. 2(c)), which are regarded as the foreground 
noises, out of the border set. 
 

 
Fig. 2. Illustration of the background prior, (a) input image, (b) superpixels, (c) PB map, (d) border set 

(the black regions along image borders), (e) background prior 
 

We first adopt the probability of boundary (PB) [49] to detect image boundary (see Fig.  
2(c)). The boundary feature of the thi − superpixel is calculated by the average PB value of 
pixels along the edge contour of superpixel i , as follows:  
 

∑
∈

=
iBI

pb

i
i I

B
PB 1

                                                                (1) 

 

where iB is the edge pixel set of superpixel i and iB denotes its cardinality. The PB value of 

pixel I is denoted by pbI . Since the superpixel with large boundary feature is more likely to be 
the object, we remove the superpixels whose boundary features are larger than the adaptive 
gray threshold derived by [50]. Then the remaining superpixels in the border set are selected as 
background priors, containing more stable and reliable background information. As shown in 
Fig. 2 (e), the selected background seeds (e) have less foreground noise than the border set 
(see Fig. 2 (d)).  

3.2 Superpixels Similarity Measure 
In the next stage of BPS algorithm, superpixels are gradually assigned likelihood labels, based 
on their similarities to the background priors. Hence, we must first define a suitable 

(a) (b) (c) (d) (e) 
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dissimilarity measure between two superpixels, and between a superpixel and a region (a 
group of superpixels).  

To measure the dissimilarity between two superpixels, the conventional methods [15-17] 
adopted a Gaussian function to calculate the weights, which measure the difference of the 
mean color between two superpixels. However, it omit the texture information of the 
superpixel. In natural images, two superpixels with the same average color exactly, have 
different textures completely. To exploit the texture information in saliency detection 
framework, we model each pixel as a 5D feature vector in a joint color-spatial feature space, 
i.e., 
 

),),,(),,(),,((, yxyxbyxayxLf yx =                                               (2) 

 
where ),( yx are the 2D pixel coordinates and )),(),,(),,(( yxbyxayxL are the corresponding 
pixel values in the Lab color space. We use the Lab space because it is better modeled by a 
normal distribution in comparison to RGB [51]. Then, each superpixel ip can be represented 
as a multivariate normal distribution ),( iiN Σµ in the 5D feature space, where the mean 

vector iµ and the covariance matrix iΣ are estimated from the superpixel. All superpixels are 
eroded with a 3×3 structural element to avoid border effects. 

The Kullback-Leibler divergence (KLD) can be used to measure dissimilarity between two 
distributions, but is not symmetric [52]. Here, we use the minimum KLD between two 
superpixels as our dissimilarity measure, i.e., 
 

)),(),,(min(),( 122121 ppKLppKLppD =                                          (3) 

 
where superpixels 1p and 2p are represented by two Gaussians, with distributions 

),( 11 ΣµN and ),( 22 ΣµN , and the KLD between two d-dimensional Gaussians[52] is 
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Note that Eq. (3) is a symmetrized version of the KLD in (4), and has an intuitive 

interpretation that two superpixels are similar if either of them can be well described by the 
other. With this dissimilarity the background holes can be reliably identified as similar to the 
background. 

A region in an image (e.g., the background) is represented as a set of 
superpixels, },,{

1 krr ppR = , where }{ kr are the indices of the superpixels forming the 
region. Using the dissimilarity between superpixels in Equation (2), we define the 
dissimilarity between a superpixels p and a region R as the minimum dissimilarity between 
the superpixel p and any superpixel in R , 
 

),(min),( rpDRpD
Rr∈

=                                                         (5) 
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We define the dissimilarity between two regions 1R and 2R as the minimum dissimilarity 
between their superpixels, 
 

),(min),(min),( 2,21
121

RrDprDRRD
RrRpRr ∈∈∈

==                                    (6) 

 

 
Fig. 3. Two examples with both background and foreground have very different distributions 

 
Note that both background and foreground can be multimodal, which is shown in Fig. 3. 

That is, superpixels in one region (e.g., background) may have very different distributions 
(e.g., tree and grass in the left example in Fig. 3). Therefore, for the superpixel-region 
dissimilarity, we use the minimum dissimilarity so as to match the superpixel to the most 
similar part in the region. Likewise, the minimum dissimilarity measure between two regions 
implies that they are similar if they have superpixels in common (e.g., both contain grass in the 
right example in Fig. 3). In the context of salient object detection, using alternatives such as 
median dissimilarity or max-min dissimilarity may not work well due to the regions being 
multi-modal. 

3.3 Soft-Label Segmentations 
With the superpixel distances defined in Equation (3) we next describe our foreground 
extraction algorithm. Under the assumption that the background priors provides sufficient 
background statistics, we first initialize the background priors, and then gradually compute a 
soft label segmentation. Generally, the objective is to assign each image superpixel ip a 
likelihood (soft-label) of belonging to the foreground category, denoted by )( ipL . 

The partitioning process proceeds as follows. First, all patches ip overlapping with the 
background mask form the initial background prior B , and are given zero likelihood, 
 

BppL ii ∈∀= ,0)(                                                           (7) 

 

Next, the initial foreground region 0F is formed using the set of patches that are sufficiently 
far from B , 
 

{ }tii DBpDpF >= ),(0                                                        (8) 

 

where tD is a foreground threshold whose value will be discussed at the end of the subsection. 
The foreground likelihood of these initial foreground patches is set to 1, 
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0,1)( FppL ii ∈∀=                                                               (9) 

 
The remaining unlabeled patches are progressively labeled with patches furthest from the 

background considered first, i.e., in descending order based on their distances from the 
background prior B , ),( BpD i . Let Θ be the set of currently labeled patches. For each 

patch ip under consideration, a local conditional probability with respect to any labeled 

patch Θ∈jp is computed by comparing the distances from ip to the background 

prior B and jp using the softmax (logistic) function, 

 

),(),(

),(

)( BpDppD

ppD

ji
iji

ji

ee
eppl

−−

−

+
=                                                   (10) 

 
Since the feature space represents both color and location, Eq. (10) will give high 

likelihood when the two patches are both visually similar and spatially close together, while 
also being dissimilar to B . The overall likelihood of patch ip being foreground is estimated by 
calculating the maximum likelihood score over all preceding patches, 
 

)()(max)( jijpi pplpLpL
j Θ∈

=                                                      (11) 

 
Eq. (11) considers both the conditional probability of the current patch being foreground 

given the labeled patch, and the probability of the labeled patch also being foreground. Note 
that these patches are not explicitly assigned a foreground or background label, but instead 
assigned a likelihood of being foreground, based on foreground likelihood of preceding 
labeled patches. After all unlabeled patches are processed with (11), a likelihood L is defined 
for every patch, resulting in a soft-labeling of foreground regions in the image. 
 

(e)(d)(c)(b)(a)  
Fig. 4. Different initial foreground region by selecting different thresholds, (a) original image, (b) 

Dt=10, (c) Dt=25, (d) Dt=35, (e) Dt=45 
 

We now turn our attention to the threshold tD that determines the initial foreground 

region 0F . The choice of threshold is important since it may lead to different foreground seeds 
and hence different soft-label partitions (as shown in Fig. 4). Rather than select a single 
threshold, we instead consider multiple thresholds, i.e., multiple foreground initializations, 
and produce various candidate soft-label partitions for consideration. In practice, we use all 
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thresholds tD between the lower and upper bounds, 5=lD and 50=uD . This interval allows 
a large enough set of initial foreground priors but excludes unnecessary initializations. Since 
there are a finite number of possible ),( BpD i values (one for each image patch), we only need 

to try a finite number of thresholds. In particular, we sort all values of ),( BpD i within the 

interval ],[ ul DD in ascending order and use the midpoints between two successive values as 
the set of thresholds. Running the soft-label partitioning method for each threshold, we obtain 
a large set of soft-label partitions. The size of the set depends on the number of patches in the 
image. Simple images will have few patches. On the contrary, cluttered images will have more 
patches and obtain a larger set of soft-label partitions. 

3.4 Salient Object Detection 
Based on the soft-label partitions aforementioned, the proposed algorithm next builds a 
foreground probability map by fusing all soft-label partitions. The fusion is based on the idea 
of similarity voting. That is, partitions sharing more similarities are given higher influence. 
Denote iF as the thi − soft-label partition from the previous stage, and m

iF as the likelihood 

value of the thm − pixel in iF , where pixels take the likelihoods of their corresponding patches. 

Then, the similarity between two soft-label partitions iF and jF  is defined as 
 

∑
∑
=

=

+

−
= M

m
m
j

m
i
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m
m
j

m
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ji
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FF
FFd

1

1

)(
),(                                                (12) 

 
where M is the total number of pixels, and )(xsign is 0 when 0=x and 1 when 0>x . We 
then construct a symmetric affinity matrix A with entries 
 

)2/),(exp(),( 22 σji FFdjiA −=                                               (13) 
 
where 2σ is the variance of the pairwise distances between all partitions }{ iF  [53]. Finally, a 

real-valued probability map is calculated as the weighted sum of the soft-label partitions }{ iF , 
 

i
i

imap FwS ∑= 2                                                                (14) 

 
The weight vector w is determined using the following constrained optimization problem, 

 

1..,max 2 =wtsAwwT                                                     (15) 

 
Eq. (15) is a standard Rayleigh quotient problem [54], and the optimal w is given by the top 

eigenvector of A . Intuitively, the weights found by Eq. (15) are higher for partitions sharing 
more similarities. In short, the probability map is computed as the weighted sum of all 
soft-label partitions, where larger weights are given to more similar partitions. This 
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corresponds to a similarity voting process leading to a better probability map, compared to 
[18]. Since the probability map indicates the probability of the pixel belongs to the target, 

mapS is defined as the final saliency map in the BPS algorithm. 

4. Experimental Results and Analysis 
In this section, the performance of BPS algorithm is evaluated over five datasets that are 
widely used in previous works, e.g. [24,46]. Next, we describe the datasets shortly, discuss the 
parameter in our algorithm and report both quantitative and qualitative comparisons of BPS 
approach with state-of-the-art approaches in detail. To save the space, the method is compared 
with several prior ones, including LRMR [29], RC [4], GS [16], MR [17], MC [24], LPS [55], 
MS [56], wCtr [36], SCA [57], GP [58], BL [46] and GL [59]. Table 1 summarizes the details 
of these algorithms. To evaluate these methods aforementioned, the results are originating 
from either provided by authors or ran their implementations based on the available codes or 
software. BPS algorithm is implemented in Matlab 2010a. All experiments are conducted on a 
PC with an Intel Core i3-3240 3.4 GHz CPU and 4 GB RAM. In the experiment, all input 
images are over-segmented into 200 superpixels. For the threshold in Eq.(8), we fix it as 
described in Section 3.3. 
 

Table 1. Summary of existing methods compared in this paper. “Code”: “M” = Matlab, “C” = C/C++ 
Model Year Code Prior Dataset(s) 

LRMR [29] 2012 M+C Location + Semantic + Color MSRA 
RC [4] 2015 C++ Center MSRA 
GS [16] 2013 M Boundary MSRA, Berkeley 
MR [17] 2013 M Boundary MSRA, DUT-OMRON 
MC [24] 2013 M+C Boundary MSRA,ECSSD, DUT-OMRON 
MS [56] 2014 M+C Center MSRA 

wCtr [36] 2014 M Boundary connectivity MSRA, SED 
SCA [57] 2015 M+C Boundary MSRA, ECSSD, DUT-OMRON 
GP [58] 2015 M+C Center MSRA, ECSSD 

BL [46] 2015 M+C Center MSRA, Berkeley, SED, 
DUT-OMRON 

LPS [55] 2015 M+C Boundary + Objectness MSRA, ECSSD 
GL [59] 2015 M+C Boundary + Center + Objectness MSRA 

 

4.1 Datasets and Evaluation Measures 
1) Datasets: Experiments are performed on five different image sets which are generated from 
five publicly available saliency object detection databases (all with human-marked binary 
mask for salient regions as ground truth), i.e., MSRA [33], ECSSD [41], DUT-OMRON [17], 
SED [60] and Berkeley [61]. MSRA [33] includes 5000 images, originally containing labeled 
rectangles from nine users drawing a bounding box around what they consider the most salient 
object. There is a large variation among images including natural scenes, animals, indoor, 
out-door, etc. We use the salient object (contour) as binary masks. To represent natural image 
situations, Yan et al. [41] extended their CSSD dataset in to the larger ECSSD dataset, which 
contains 1000 images. It includes many semantically meaningful but structurally complex 
images. Ground truth masks were produced by five subjects. DUT-OMRON [17] which 
consists of 5,168 images carefully labeled by five users, have one or more salient objects and 
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relatively complex background. Compared with the MSRA dataset, images in the 
DUT-OMRON dataset are more difficult, thus more challenging, and provide more space of 
improvement for saliency detection. To test methods in the image with multiple objects, we 
also conduct experiments on the SED saliency benchmark database with 200 natural images. 
SED [60] contains two subsets: SED1 that has 100 images containing only one salient object 
and SED2 that has 100 images containing two salient objects. Pixel-wise ground truth 
annotation for the salient objects in both SED1 and SED2 are provided. The last image set 
used in this part is the even more challenge Berkeley saliency object database, which is based 
on the well-known 300 images in Berkeley segmentation database [61]. Those images usually 
contain multiple foreground objects of different sizes and positions in the image. Furthermore, 
the appearance of foregrounds and backgrounds are also more complex. Please see Table 2 for 
details of these datasets. 
 

Table 2. Summary of datasets in the comparison 

Name Scale Type GT 

MSRA  5000 Single object, simple background 

Binary pixel-wise 
mask 

DUT-OMRON 5168 Single or multiple object(s), simple or complex 
b k d ECSSD 1000 Single object, complex scene 

SED 200 Single or multiple object(s), simple background 
Berkeley 300 Single or multiple object(s), complex scene 

 
2) Fixed Threshold: In the first evaluation measure, we use binary masks, which obtained by 
directly thresholding a saliency map mapS using threshold from the range [0,…,255], to 
calculate the precision and recall rate. Precision corresponds to the percentage of salient pixels 
correctly assigned, while recall corresponds to the fraction of detected salient pixels in relation 
to the number of salient pixels in ground truth maps [4]. Here, the precision P and 
recall R values are calculated as: 
 

SF
GFSF

P
∩

=  and 
GF

GFSF
R

∩
=                                          (16) 

 
where GF is the ground truth map, |·| denotes the sum area of masks. SF is the binary 
mask obtained by directly thresholding a saliency map using threshold. 
3) Adaptive Threshold: In the second evaluation measure, we employ the 
saliency-map-dependent threshold proposed by [16] and define it as proportional to the mean 
saliency of a map: 
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whereW and H are the width and height of the saliency map in pixels, respectively. If the 
saliency value of a pixel is larger than threshold ατ , it is considered as the part of salient object. 
In many applications, high precision and high recall are both required. Then a weighted 
harmonic mean measure between precision and recall, i.e., F-measure, is introduced by 
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where we use 3.02 =β as that in [4] to weight precision more than recall. As can be seen later, 
one method cannot have in all the highest precision, recall and F-measure as the former two 
are mutually exclusive and the F-measure is a complementary metric to balance them. 
4) Mean Absolute Error: In the third evaluation measure, we introduce the Mean Absolute 
Error (MAE) between the continuous saliency map mapS and the binary mask of ground truth 
GT: 
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whereW and H are the width and height of the saliency map in pixels, respectively. The 
metric takes the true negative saliency assignments into account whereas the precision and 
recall favor the successfully assigned saliency to the salient pixels [42]. Moreover, the quality 
of the weighted continuous saliency maps may be of higher importance than the binary masks 
in some cases [14]. 

4.2 Quantitative Comparisons 
1) Mean Absolute Error: The MAE estimates the approximation degree between the saliency 
map and the ground truth map, and it is normalized into [0, 1]. Fig. 5 shows the MAE metric of 
BPS algorithm and other methods on MSRA [33], ECSSD [41], DUT-OMRON [17], SED 
[60] and Berkeley [61]. Considering the recent and well-performed methods, such as MS [56], 
wCtr [36], SCA [57], GP [58], BL [46], LPS [55] and GL [59], BPS achieves the lowest error 
of 0.1116, 0.1711, 0.1386, 0.1466 (SED1) and 0.1162 (SED2), and 0.2254 on the 
corresponding datasets.  
 

 
Fig. 5. MAE metric on five image datasets 
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It can be seen that LRMR [59] has the highest MAE scores in five image datasets. In 
addition, the MAE values of BL is slightly lower than LRMR, but higher than other methods. 
The rest algorithms, except wCtr,have similar MAE scores in these image databases. The 
MAE values of wCtr [36] are slightly higher than or the same as  BPS algorithm. According to 
the definition of the MAE, it provides a direct way of measuring how close a saliency map is to 
the ground truth. BPS algorithm achieves the lowest MAE scores on the four corresponding 
datasets, which indicates that the resultant maps are closest to ground truth. 
2) Evaluation on DUT-OMRON: Fig. 6 displays the P-R curves and F-measure on 
DUT-OMRON benchmark. On one hand, BPS method achieves the highest precision rate 
covering most ranges of the recall while other models, such as wCtr [36], SCA [57] and MS 
[56], have similar performance competing BPS and yet lower precision at specific ranges of 
recall. On the other hand, the highest precision and F-measure score of 0.6474 and 0.6158 is 
accomplished by BPS outperforming other 12 methods. Note that due to the cluttered 
background, many models treat the regions near the salient object as salient area, such as GS 
and wCtr, their model has the highest recall value in Fig. 6; however, it is more important to 
have a high value of precision or F-measure in the saliency community. 
3) Evaluation on MSRA and ECSSD: Figs. 7-8 reports the performance comparison on these 
two datasets. For the ECSSD benchmark, compared with most methods, BPS achieves the best 
curve performance as well as the highest F-measure. Specifically, BPS has the higher 
precision of 0.7767, lowest MAE error and similar F-measure. In addition, since GL [59] 
achieves better precision score of 0.7821, their recall is lower than most methods, including 
BPS algorithm.  
 

 
Fig. 6. Quantitative comparisons of saliency maps produced by different approaches on DUT-OMRON 

dataset 
 

 
Fig. 7. Quantitative comparisons of saliency maps produced by different approaches on ECSSD dataset 
 

For the MSRA database, we plot the precision-recall curves and F-measure in Fig. 8 to 
compare our method with twelve state-of-the-art approaches. Though the images in MSRA 
database contain different kinds of content, the background of each image is usually large 
while the foreground is relatively compact with the same color. Most of the state-of-the-art 
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algorithms have similar performance on this image dataset. Compared with other methods, 
BPS model achieves the best curve performance spanning most ranges of recall as well as the 
highest precision and F-measure of 0.8523, 0.8344, respectively. From Fig. 8, the precision, 
recall and F-measure of BPS approach are comparable to the currently state-of-the-art 
methods, which indicate our method could generate reasonable saliency maps.  
 

 
Fig. 8. Quantitative comparisons of saliency maps produced by different approaches on MSRA dataset 
 
4) Evaluation on SED and Berkeley datasets: We also conducted the comparisons on the 
more challenging Berkeley database. All the comparison results, including P-R curve and 
weighted F-measure, are shown in Fig. 9. As can be seen, the performance of BPS 
outperforms those of other state-of-the-art algorithms in terms of all metrics. Specifically, the 
precision values overall P-R curve of BPS are almost higher than that of all other 
state-of-the-art approaches as well. From Fig. 9, it is observed that BPS approach can achieve 
the highest weighted F-measure score. It is also worth noting that because a large number of 
images in the Berkeley dataset contain complicated content and multiple salient objects, many 
excellent approaches, such as GL [59], SCA [57], GP [58], BL [46] and wCtr [36], cannot 
work effectively in this dataset though they can achieve promising performance on the MSRA 
and ECSSD datasets. On the contrary, BPS has the capability to yield consistently satisfactory 
results on both of the datasets, especially on the more challenging Berkeley dataset. 
 

 
Fig. 9. Quantitative comparisons of saliency maps produced by different approaches on Berkeley 

dataset 
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We compare the proposed approach with the state-of-the-art methods in this group of 
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shown in Fig. 10. As can be seen, BPS performs similar to other state-of-the-art algorithms in 
SED1 database. More encouragingly, compared with other state-of-the-art algorithms, BPS 
achieves the highest weighted F-measure value compared with other state-of-the-art methods. 
Similar to the Berkeley dataset, the SED2 dataset also contains a large number of images with 
complicated content and multiple salient objects. More encouragingly, compared with other 
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state-of-the-art algorithms, BPS has achieved a  higher precision values along almost the 
whole P-R curve. Note that the wCtr [36] model has a competitive high value of precision in 
the recall range from 0.7 to 0.8, which means they have a strong capability to suppress the 
image background in this interval. In addition, BPS achieves the highest recall and F-measure, 
which indicates that it tends to highlight the entire salient objects and has more capability to 
handle tough scenarios.  
 

 
Fig. 10. Quantitative comparisons of saliency maps produced by different approaches on SED dataset 
 
5) Execution Time: Table 3 shows the average execution time of processing one image in the 
MSRA dataset. Experiments are conducted and timed on a PC with an Intel Core i3-3240 3.4 
GHz CPU and 4 GB RAM, running Matlab 2010a. From Table 3, BL [46] spends much more 
time to weak and strong bootstrap learning for each image. In addition, LPS and GL take much 
longer than BPS because the calculation of the objectness measure [55] is time consuming. By 
exploiting boundary prior, the time complexity of BPS is similar to that of MR and wCtr. In 
contrast, those methods that directly utilize the objectness measure for each single image (LPS 
[55], GL [59]) have suffered from poor efficiency as well as inferior P-R curves. 
 

Table 3. Running time analysis of different methods on MSRA database (time/s) 
Methods LRMR [29] RC [4] GS [16] GP [58] wCtr [36] BL [46] GL [59] 
Time(s) 47.28 0.16 0.25 0.99 0.28 52.14 5.4 
Methods LPS [55] SCA [57] MS [56] MR [17] MC [24] BPS / 
Time(s) 1.96 0.78 14.68 0.26 0.37 0.28 / 

 
Note that some methods such as RC [4] and GS [16] have faster efficiency than BPS; we 

believe that using C++MEX implementation can substantially improve the computational 
efficiency. 

4.3 Qualitative Comparisons 
Several natural images with complex background are shown in Fig. 11 for visual comparison 
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of our method w.r.t. the most recent state-of-the-arts. For single-object images, BPS accurately 
extracts the entire salient object with few scattered patches, and assigns nearly uniform 
saliency values to all patches within the salient objects. For images with multiple objects, 
some methods (e.g., LRMR [29], LPS [55] and BL [46]) miss detecting parts of the objects, 
while some (e.g., GS [16] and GP [58]) incorrectly include background regions into detection 
results. By contrast, BPS pops out all the salient objects successfully. For the images with 
complex scenes, most methods fail to identify the salient objects, while BPS locates them with 
decent accuracy. Finally, for the images whose foreground and background share similar 
appearance, BPS often separates the salient objects from the background. However, by fusing 
all soft-label partitions, parts of background near the salient object are detected as the object in 
this case. In general, these results illustrate the robustness of the BPS algorithm since it almost 
successfully highlights the salient object. 
 

 
Fig. 11. Visual comparisons of the saliency maps by different methods 
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(e)(a) (c)(b) (d) (f) (g) (h)  
Fig. 12. Demonstration of black-and-white salient region generated by BPS and RCC, (a) original 

image, (b) ground truth, (c) the results of  RC, (d) the binarized results of (c), (e) the results of RCC; (f) 
the results of BPS, (g) the binarized results of (f), (h) black-and-white salient region generated by BPS 

 
It is also worth pointing out that our approach performs well when the object touches the 

image border, e.g. the last row of SED database in Fig. 11, even though it violates the 
pseudo-background assumption. MR [17], which the first stage is based on the 
pseudo-background assumption, cannot label the saliency seeds correctly when the object 
touches the image border. The similar case also find in MC algorithm. Since MC [24] exploits 
the boundary prior to determine the absorbing nodes, the small salient object touching image 
boundaries may be incorrectly suppressed. In addition, according to the computation of the 
absorbed time, a node with sharp contrast to its surroundings often has abnormally large 
absorbed time, which results that most parts of object even the whole object are suppressed.  

 
Table 4. Comparison of black-and-white salient regions by BPS and RCC on MSRA database 

Methods Precision Recall F-measure 
RC+Fixed threshold 0.8045 0.7737 0.7972 
BPS+Fixed threshold 0.8523   0.7742 0.8344 
RC+GrabCut(RCC) 0.8762 0.8054 0.8587 

BPS+GrabCut 0.8914 0.8127 0.8719 
 
In [4,62], Cheng et al. present the histogram-based contrast (HC), which exploits the 

pixel-wise color separation to produce saliency maps. In addition, RC (Region-based 
Contrast), which is an improvement of HC that takes spatial distances into account at the cost 
of reduced computational efficiency, can handle complex foreground and background with 
different details, as shown in Fig. 11. By relying solely on the color of pixels/regions that is 
much different from the dominant one, RC [4] often mistakenly focus on distinct background 
colors, e.g., the holes in the background are also detected as salient objects in Fig. 12. In order 
to detect exact black-and-white salient objects, the saliency map obtained by RC can be 
binarized for the initialization of classical GrabCut [9] by using a fixed threshold defined in 
Eq. (17). For image pixels with saliency value bigger than ατ , the largest connected region is 
considered as initial candidate region of the most dominate salient object. Once initialized, 
GrabCut is ran iteratively to improve the saliency result (denoted as RCC [62]). To compare 
with RCC, we carry out the image binary by using a fixed threshold ατ and also use the 
GrabCut method to detect exact black-and-white salient objects. The results are shown in Fig. 
12 (h). In Fig. 12 (c) and (f), we can see that the saliency map generated by BPS is more 
accurate than that of RC. Note that the binarized results of BPS are closer to the ground truth. 
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It makes the GrabCut method possible to get accurate final results with only a few iterations. 
Simultaneously, we evaluate the results of RCC and ours in MSRA dataset and list them in 
Table 4. From Table 4, the value of precision and F-measure of the proposed algorithm is 
higher than RCC algorithm. It shows from a side view that BPS algorithm is better than RC. 

For other state-of-the-art approaches in Fig. 11, it can be seen that while GS [16] which 
based on boundary priors also detects the regions in background fails when objects touch the 
image boundary to quite some extent, or when connectivity assumptions are invalid in the 
presence of complex backgrounds or textured scenes. LRMR [29], which integrates the 
high-level priors, is focus on the center and the warm color of image. It can be seen that the 
salient objects with warm colors such as red and yellow are more pronounced. BL [46], which 
exploits both weak and strong bootstrap learning models, integrate multi-scale saliency maps 
to improve the detection performance. However, it makes the algorithm cannot suppress the 
noise in the background and preserve the object boundary well. MS [56] detects the salient 
object by multi-scale analysis on superpixels. Unlike BL, the results of MS reserve the 
boundary of salient object better. However, it cannot reserve the object as a whole. For 
example, in the first line of SED database, the fruits cannot detect as the salient region 
simultaneously. 

5. Conclusion and Future Work 

We propose a bottom-up method to detect salient regions in images based on adaptive 
figure-ground classification. We remove the foreground noises for the background prior by 
taking the superpixels located in four borders into consideration. The initial foreground prior is 
obtained by selecting superpixels that are the most dissimilar to the background prior. 
According to a group of threshold, foreground priors generate multiple soft-label partitions 
that are not explicitly assigned a foreground or background label. We combine all soft-label 
partitions into a saliency map based on the idea of similarity voting. Both qualitative and 
quantitative comparisons show that the proposed approach performs slightly better than 
several recently state-of-the-art algorithms. Our future work will focus on high-level 
knowledge, which could be beneficial for handling cases that are more challenging and other 
kinds of saliency cues or priors to be embedded into our framework. 
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