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Abstract 

Support Vector Machine (SVM) is a well-known machine learning classification algorithm, 
which has been widely applied to many data mining problems, with good accuracy. However, 
SVM classification speed decreases with increase in dataset size. Some applications, like 
video surveillance and intrusion detection, requires a classifier to be trained very quickly, 
and on large datasets. Hence, this paper introduces two filter-based instance selection 
techniques for optimizing SVM training speed. Fast classification is often achieved at the 
expense of classification accuracy, and some applications, such as phishing and spam email 
classifiers, are very sensitive to slight drop in classification accuracy. Hence, this paper also 
introduces two wrapper-based instance selection techniques for improving SVM predictive 
accuracy and training speed. The wrapper and filter based techniques are inspired by Cuckoo 
Search Algorithm and Bat Algorithm. The proposed techniques are validated on three 
popular e-fraud types: credit card fraud, spam email and phishing email. In addition, the 
proposed techniques are validated on 20 other datasets provided by UCI data repository. 
Moreover, statistical analysis is performed and experimental results reveals that the filter-
based and wrapper-based techniques significantly improved SVM classification speed. Also, 
results reveal that the wrapper-based techniques improved SVM predictive accuracy in most 
cases. 
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1. Introduction 

Support Vector Machine (SVM) is a supervised machine learning (ML) algorithm, 
developed in 1995, for binary classification problems [1]. SVM has been applied 
successfully to wide range of problems, including pattern recognition [2], email 
classification [3, 4] and image processing [5]. However, SVM training speed decreases, with 
increase in dataset size. Its training time is approximately 𝑂(𝑛2), where 𝑛, refers to training 
dataset size [6]. Many SVM speed optimization techniques have been proposed in literature, 
and most of these techniques tackled optimization from different approaches, including: 
instance selection, parameter optimization and feature selection. Among these three 
approaches, instance selection is one of the most efficient [7, 8]. Instance selection helps in 
increasing classification speed, decreasing memory consumption and improving 
generalization performance of a classifier. Some instance selection techniques have been 
proposed in literature, and majority of them are based on k-NN classifier [7]. Also, some 
techniques are based on k-d trees [9], clustering [10, 11], tabu search [12] and sequential 
search [13]. However, very few techniques explored Nature Inspired (NI) Algorithms. Some 
of the few existing NI-based instance selection techniques focused on: Evolutionary 
Algorithm (EA) [14, 15], Memetic Algorithm [16], Ant Colony Optimization (ACO) [17] 
and Artificial Immune System (AIS) [18]. This paper propose two wrapper-based and filter-
based nature inspired instance selection techniques for improving SVM classification speed 
and accuracy.  

Some applications, such as video surveillance and intrusion detection, requires a classifier to 
be trained very quickly to enable the classifier identify new target concepts [6]. Moreover, 
this applications requires the classifier to be trained on large datasets. For this kind of 
applications, SVM training time can be unacceptably high, which renders SVM ineffectual 
[6]. Furthermore, even in applications when training can be performed offline (such as spam 
email filters), if the size of training data or number of classes is large, then SVM 
computational complexity will be too high [6]. Hence, this paper propose two filter-based 
instance selection techniques for improving SVM training speed. Fast classification is often 
achieved at the expense of classification accuracy, and some applications, such as phishing 
and spam email classifiers, are very sensitive to slight drop in classification accuracy. Hence, 
the paper also introduces two wrapper-based instance selection techniques, for improving 
SVM predictive accuracy. The proposed techniques are not limited to SVM, they can also be 
applied to other ML algorithms.  

 

1.1 E-Fraud Detection 

Credit card fraud, phishing and spam email are three prominent e-fraud types that has caused 
great damages to the global economy in recent times. Spam email refers to unsolicited bulk 
email [19], mostly sent by individuals trying to advertise products. Phishing refers to 
unsolicited emails, sent by individuals trying to obtain delicate information from users, 
usually for the purpose of fraud. Credit card fraud is a term used for fraudulent activities 
involving credit or debit cards. These three e-fraud types, has caused colossal loss of 
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millions of dollars. Between October 1st, 2013 and December 1st, 2014, some companies lost 
a total of $179 million US dollars to email scam. Also, seven thousands companies in USA 
alone, lost approximately $750 US dollars to phishing, in August 2015 [20]. In 2017, card 
fraud worldwide is expected to total $27.69 billion US dollars [21]. Unfortunately, e-fraud is 
on the increase, and fraudsters are devising new sophisticated techniques capable of 
bypassing existing e-fraud detection systems. Hence, robust e-fraud detection techniques are 
highly required.  

The remaining part of this paper is structured as follows. Section 2 provides a brief 
introduction to instance selection and a brief survey of existing instance selection techniques. 
Section 2 also introduces NI techniques and provide a brief survey of existing NI-based 
speed optimization techniques. Furthermore, Section 3 provide details on the proposed 
techniques and their experimental results. Finally, the paper is concluded in Section 4. 

2. Literature Review 
A sizable number of NI-based SVM optimization techniques has been proposed in literature. 
Most of the proposed techniques focused on feature selection and parameter optimization. 
Few studies focused on instance selection. This section present a brief survey of some 
existing instance selection, BA and CSA based techniques. 
 

2.1 Instance Selection 

A dataset consist of a collection of redundant (superfluous or harmful) and relevant instances. 
Superfluous instances refers to instances that contributes negligibly to the decision surface of 
a classifier, and harmful instances are instances that leads to high false classifications [22]. 
Instance selection aims to remove superfluous or harmful instances from a dataset. It is a 
very important preprocessing step in data mining [23, 24], and it can be applied to reduce 
memory consumption, increase processing speed [25, 26] and improved performance [23]. 
Instance selection algorithms are divided into two: wrapper and filter [7]. Wrapper-based and 
filter-based techniques differs in their selection criterion. The selection criterion of wrapper-
based techniques depends on the predictive accuracy produced by a classifier, while the 
selection criteria of filter-based techniques depends on a function, which is independent of a 
classifier [7]. Chen et al. [27] proposed a filter-based instance selection technique for 
selecting boundary instances. In the study, firstly, clustering algorithm was used to select 
cluster centers of positive class instances.  
Furthermore, the selected cluster centers were used as references for selecting boundary 
instances. Authors designed the algorithm on two postulations. Firstly, negative instances 
near cluster centers of a positive class are close to the boundary, and secondly, positive 
instances far away from cluster centers of a positive class are close to the boundary. This 
implies that, positive instances close to a boundary and negative instances far away from a 
boundary contributes less to the decision surface. Authors performed some experiments to 
test the efficacy of the proposed technique, and the technique performed well.  
In a different work, Hansheng and Venu [28] proposed a new method for improving the 
computational speed of SVM. In the proposed method, two techniques were combined: 
Principal Component Analysis (PCA) and Recursive Feature Elimination (RFE). PCA was 
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used to reduce the dataset dimension, and RFE was used to select relevant features, which in 
turn, reduced the number of redundant and non-discriminative features. The proposed 
technique was tested, and it improved SVM computational speed. Additionally, Panda et al. 
[6] proposed a boundary detection algorithm for improving the speed of SVM. The 
algorithm was designed to eliminate non-relevant training data instances, that is, instances 
that are far from a decision boundary. In the study, Panda et al. [6] designed a function that 
assigns high weights to instances close to a decision boundary. The algorithm was tested on 
five datasets, and it produced good reduction rates. 
 

2.2 Nature Inspired Techniques 

Nature provides some of the best and well-organized ways of solving problems. NI 
algorithms are inspired by the intriguing problem solving process of natural systems. They 
have been used to solve many real world complex problems including: hostel allocation 
problems [29], graph coloring problems [30], annual crop planning problems [31], and email 
classification [32]. Some NI technique include: Firefly Algorithm (FFA) [33], Particle 
Swarm Optimization (PSO) [34], Simulated Annealing [35], Cuckoo Search Algorithm 
(CSA) [36], and Bat Algorithm (BA) [37]. This study presents two filter-based and wrapper-
based instance selection algorithms inspired by CSA and BA. A brief introduction to BA and 
CSA is presented next. 

2.2.1 Bat Algorithm 

BA is inspired by the echolocation behavior of bats. Most bats uses echolocation to locate 
food (or preys), to avoid obstacles and to locate their roost in the dark [37]. Bats emits loud 
sounds in patterns, and pays attention for echo that may reflect back from objects in the 
surroundings [37]. During hunting, bats emit pulses at a very high rate. However, the rate 
reduces as they fly closer to a prey [37]. Some bats have good vision, and some have very 
good smelling ability [37]. This enhances their ability to efficiently detect preys and avoid 
obstacles [37]. This study propose an instance selection algorithm based on standard BA 
proposed by Yang [37]. BA was formulated using the following rules [37]: 

• All bats use echolocation to detect distance, and they can differentiate between preys 
and obstacles 

• Bats randomly fly, with velocity 𝑣𝑖  at position 𝑥𝑖  with a fixed frequency 𝑓𝑚𝑖𝑛 , 
varying wavelength ⋋  and loudness 𝐴𝑜  to search for preys. Depending on their 
target proximity, bats can regulate their rate of pulse emission, and the wavelength 
of their emitted pulses. 

• Loudness varies from a large positive value, 𝐴𝑜, to a minimum value, 𝐴𝑚𝑖𝑛. 

Pseudocode for BA is given in Fig. 1. The position 𝑥𝑖, velocity 𝑣𝑖 and frequency 𝑓𝑖  for each 
virtual bats are firstly initialized. Furthermore, they are updated as follows [37]: 

𝑓𝑖 =  𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 −  𝑓𝑚𝑖𝑛) 𝛽,                (1) 

𝑉𝑖𝑡 =  𝑉𝑖𝑡−1 + �𝑋𝑖𝑡 −  𝑋∗� 𝑓𝑖 ,                  (2) 



1352                                    Akinyelu et al.: On the Performance of Cuckoo Search and Bat Algorithms Based Instance Selection 
 Techniques for SVM Speed Optimization with Application to e-Fraud Detection 

𝑋𝑖𝑡 =  𝑋𝑖𝑡−1 + 𝑉𝑖𝑡                 (3)
  

where 𝛽 is a randomly generated number between [0, 1], and 𝑋∗ is the current global best 
solution. 𝑓𝑖  is used to control speed and range of bat movements. Initially, each bat is 
assigned a frequency, randomly selected from [𝑓𝑚𝑖𝑛,𝑓𝑚𝑎𝑥]. Furthermore, new solutions are 
generated and a solution is selected from the current best set of solutions [37]. Afterwards, a 
new solution is locally generated for each virtual bat in the population, using random walks: 

 𝑋𝑛𝑒𝑤 =  𝑋𝑜𝑙𝑑+ ∈ 𝐴𝑡 ,                 (4) 

where ∈ is a random number generated between [-1, 1], and 𝐴𝑡  is the loudness of all the bats 
at every time interval. Additionally, per iteration, the loudness and pulse rate emission are 
regulated as follows: 

𝐴𝑖𝑡+1 = ∝ 𝐴𝑖𝑡 ,                  (5) 

𝑟𝑖𝑡+1 =  𝑟𝑖0[1 − exp(−𝛾𝑡)]                (6) 

where ∝ 𝑎𝑛𝑑 𝛾 are BA parameters. The original BA was proposed for continuous problems. 
Each virtual bat move in continuous space. However, in instance selection, each bat move in 
a binary search space, where 1 indicate that an instance is selected and 0 indicate otherwise. 
In this study, sigmoid function, shown in equation (7), is used to convert each bat positions 
to binary value. 

S�𝑉𝑖𝑡� =  1

1+ 𝑒−𝑉𝑖
𝑡 ,               (7) 

Hence, in place of equation (3), the position of each bat is updated by equation (8): 

𝑋𝑖𝑡 =  �1 𝑖𝑓 σ ≤  𝑆�𝑉𝑖𝑡�,              
0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,              

�                (8) 

where σ is a random number uniformly drawn from the range [0, 1]. 

Some BA-based techniques has been proposed in literature. Rodrigues et al. [38] proposed a 
feature selection approach based on BA and Optimum-Path Forest (OPF). Rodrigues et al. 
[38] used BA for feature selection, and OPF for classification. The technique was tested and 
it yielded promising results. In another study, Medjahed et al. [39] used binary CSA to solve 
the problem of band selection in hyperspectral image classification. In the study, Binary 
CSA was used to select relevant band subset from dataset. The selected features were then 
used to train K nearest neighbor (KNN) classifier. The proposed technique produced 
improved hyperspectral image classification.  

Taha et al. [40] proposed a feature selection approach based on BA and Naïve bayes (NB) 
classifier. Authors used BA for feature selection and NB for classification. The hybridized 
approach was tested on twelve datasets, and it yielded promising results. Emary et al. [41] 
combined BA and rough set theory (RST) to solve feature selection problem. In the study, 
BA was used to extract relevant features from a feature space. Also, authors used RST to 
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design a fitness function, which considered both classification accuracy and feature size. 
Authors evaluated the approach and compared it to two other RST-based techniques, and the 
proposed approach outperformed both techniques. Laamari and Kamel [42] proposed a 
hybrid technique for intrusion detection, based on BA and SVM. In the study, authors used 
BA in combination with SVM to solve the problem of intrusion detection. Authors used BA 
for feature selection and parameter optimization. The hybrid technique was compared to 
PSO-SVM and standard SVM, and it outperformed both techniques. 

2.2.2 Cuckoo Search Algorithm 

CSA, proposed by Yang [36], is inspired by the parasitic behavior of some species of cuckoo 
birds, and the levy flight behavior of some fruit flies and birds species. Some species rely on 
other birds for hatching their eggs and feeding their young. These species (called brood 
parasites) lay their eggs in nests of other birds [36]. Mostly, they target nests of birds that 
newly laid their eggs. Generally, cuckoo eggs hatches earlier than their host eggs, hence, by 
instinct, the newly hatched cuckoo throws the host eggs out of its nest, to increase the share 
of food provided by the host bird [36]. CSA was developed based on this parasitic behavior 
of cuckoos. The following idealized rules were used to develop CSA: 

• Each cuckoo lays one egg per time, and randomly distribute its egg to different nest 
• The best nest, containing high quality eggs, will survive to the next generation 
• Number of host nests is fixed. Also eggs laid by a cuckoo is discovered by the host 

bird by a probability of 𝑝𝑎 ∈ [0, 1] . If eggs is discovered, host bird can either 
abandon its nest and build a new nest, or throw the discovered eggs away. 

Pseudocode for CSA is given in Fig. 2. In the algorithm, new positions for each cuckoo are 
generated by performing a levy flight, given in equation (9). 

𝑋𝑖
(𝑡−1) =  𝑋𝑖

(𝑡) + 𝛼 ⨁𝐿𝑒𝑣𝑦 (⋋),                (9) 

where 𝛼 > 0 refers to step size, and it is related to the scales of problem solved. ⨁ refers to 
entrywise multiplication. Levy flight provides random walks, drawn from a levy distribution 
given in equation (10).  The levy distribution has an infinite variance and infinite mean. 

𝐿𝑒𝑣𝑦 ∼ 𝑢 =  𝑡−⋋,              (1 < ⋋ ≤ 3)             (10) 

CSA was originally designed for continuous problem. However, in this study, sigmoid 
function (shown in equation (11)) is used to convert each cuckoo positions to a binary value 
(0 or 1). One indicate that an instance is selected, and zero indicate otherwise.  
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Bat Algorithm 
Objective function 𝑓(𝑥), 𝑥 = (𝑥1, … , 𝑥𝑑)𝑇  

Initialize Bat population 𝑥𝑖(𝑖 = 1, 2, … ,𝑛) 𝑎𝑛𝑑 𝑣𝑖 

Define pulse frequency 𝑓𝑖  𝑎𝑡 𝑥𝑖 

Initialize pulse rates 𝑟𝑖 and the loudness 𝐴𝑖 

1. While 𝑡 < 𝑀𝑎𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 
1.1. Generate new solutions by adjusting frequency and updating velocities and 

solutions  
1.2. If (𝑟𝑎𝑛𝑑 <  𝑟𝑖) 

1.2.1. Select a solution among the best solutions 
1.2.2. Generate a local solution around the selected best solution 

1.3. End if 
1.4. Generate a new solution by flying randomly 
1.5. If  (𝑟𝑎𝑛𝑑 <  𝐴𝑖  𝑎𝑛𝑑 𝑓(𝑥𝑖) < 𝑓(𝑥∗))  

1.5.1. Accept the new solution 
1.5.2. Increase 𝑟𝑖  𝑎𝑛𝑑 𝑟𝑒𝑑𝑢𝑐𝑒 𝐴𝑖 

1.6. End if 
1.7. Rank the bats and find the current best 𝑥∗ 

2. End while 
3. Post process result and visualization 
__________________________________________________________________________ 

Fig. 1. Pseudocode for Bat Algorithm [37]. 

 

S�𝑉𝑖𝑡� =  1

1+ 𝑒−𝑉𝑖
𝑡 ,              (11) 

Hence, in place of equation (9), the position of each cuckoo is updated by equation (12): 

𝑋𝑖𝑡 =  �1 𝑖𝑓σ ≤  𝑆�𝑉𝑖𝑡�,              
0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,              

�                 (12) 

where σ is a random number uniformly drawn from the range [0, 1]. CSA has been used in 
literature, to solve different problems. For example, Rajalaxmia [43] solved the problem of 
feature selection in Type-2 diabetics using binary CSA and genetic algorithm (GA). In the 
study, initially, clustering was used for instance selection, afterwards, CSA and GA was used 
for feature selection. Finally, the selected instances and features were used to build a model 
for multilayer perceptron (MLP) classifier. In another study, Mousavirad and Ebrahimpour-
Komleh [44] proposed a CSA-based technique for feature selection. In the study, authors 
used CSA for feature extraction. Afterwards, the extracted features were encoded in a binary 
strings and used to train a k-NN classifier. The proposed approach was evaluated on five 
datasets obtained from UCI data repository [45], and it yielded good result. 
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Cuckoo Algorithm via Levy Flight 
Objective function 𝑓(𝑥), 𝑥 = (𝑥1, … , 𝑥𝑑)𝑇  

Generate initial population of n host nests 𝑥𝑖  (𝑖 = 1, 2, … ,𝑛)  

1. While (𝑡 < 𝑀𝑎𝑥𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛)𝑜𝑟(𝑠𝑡𝑜𝑝 𝑐𝑟𝑖𝑒𝑡𝑒𝑟𝑖𝑜𝑛) 
1.1. Get a cuckoo randomly Levy flights 
1.2. Evaluate its quality or fitness 𝐹𝑖 
1.3. Choose a nest among n (say, 𝑗) randomly 
1.4. If (𝐹𝑖 >  𝐹𝑗) 

1.4.1. Replace j by new solution; 
1.5. End if 
1.6. A fraction (𝑃𝑎) of worse nests are abandoned and new ones are built 
1.7. Keep the best solutions (or nest with quality solutions); 
1.8. Rank the solutions and find the current best 
1.9. Rank the bats and find the current best 𝑥∗ 

2. End while 
3. Post process result and visualization 

__________________________________________________________________________ 

Fig. 2. Pseudocode for Standard Cuckoo Search Algorithm [36] 

3. Proposed Algorithms 
This study presents two filter-based and wrapper-based instance selection algorithms for 
optimizing SVM training speed and predictive accuracy. The first technique is called Cuckoo 
Search Instance Selection Algorithm (CSISA), and the second technique is called Bat 
Instance Selection Algorithm (BISA). The main difference between the filter-based and 
wrapper-based techniques is in their objectives. The primary objective of the filter-based 
techniques is to improve SVM training speed, and the primary objective of the wrapper-
based techniques is to improve SVM predictive accuracy. Fig. 3 shows the pseudocode for 
BISA, Fig. 4 shows the pseudocode for CSISA and Fig. 5 shows the flowchart for the two 
algorithms. 

3.1 Proposed Cuckoo Instance Selection Algorithm 

The algorithm starts by initializing the positions for each nest and other parameters, 
including 𝑀𝑖𝑛, where 𝑀𝑖𝑛 is the minimum number of instances to be selected for training. 
Each nest position is initialized to 0 or 1, where 1 indicates that an instance is selected and 0 
indicate that an instance is not selected. Furthermore, the initialized solutions are evaluated 
and the current best solution is kept. Afterwards, new solutions are constructed by randomly 
selecting different cuckoos through levy flight. The value of each new solution is continuous, 
hence, they are converted back to binary values after construction. Furthermore, the quality 
(or fitness) of each nest is evaluated and the global best solution is saved. Fitness function 
for the filter and wrapper based CSISA are reported in sections 3.1.1 and 3.1.2 respectively. 
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This process is repeated until a user-defined threshold is reached. Afterwards, the global best 
cuckoo is selected and 𝑁 instances are extracted from it, where 𝑁 is the total number of 
instances selected by the global best cuckoo. Moreover, 𝑁 is compared to 𝑀𝑖𝑛, and if 𝑁 is 
less than 𝑀𝑖𝑛, then 𝑄 additional instances are randomly selected from the training dataset 
and added to the global best cuckoo, where 𝑄 =  𝑁 –  𝑀𝑖𝑛. Finally, the global best cuckoo is 
selected, and instances with the value of 1 are extracted and used to train SVM.  

3.2 Proposed Bat Instance Selection Algorithm 

BISA is inspired by the echolocation of bats. It begins by defining the pulse rate and 
loudness for each artificial bat and also initializing each bat solution to a binary value, where 
1 indicate that an instance is selected and 0 indicate otherwise. Furthermore, fitness value for 
each solution is calculated and the best solution is kept.  Fitness function for the filter and 
wrapper based BISA is reported in section 3.1.1 and 3.1.2 respectively. New solutions are 
constructed by constructing new frequency and velocity for each bat using equation (1) and 
equation (2) respectively. Afterwards, each solution is evaluated and the global best solution 
is updated if a better solution is found. Moreover, a random number (𝑟𝑎𝑛𝑑) is generated and 
new solutions are constructed if 𝑟𝑎𝑛𝑑 is greater than a user-defined pulse rate. The new 
solutions are retained if  𝑟𝑎𝑛𝑑 is less than a user-defined bat loudness (𝐴𝑖).  This process is 
repeated until a user-defined threshold is reached. Afterwards, the global best bat is selected 
and 𝑁 instances are extracted from it, where 𝑁 is the total number of instances selected by 
the global best bat. Moreover, 𝑁 is compared to 𝑀𝑖𝑛, where 𝑀𝑖𝑛 is the minimum number 
required training instances. If 𝑁 is less than 𝑀𝑖𝑛, then 𝑄 additional instances are randomly 
selected from the training dataset and added to the global best agent, where 𝑄 =  𝑁 –  𝑀𝑖𝑛. 
Finally, the global best bat is selected, and instances with the value of 1 are extracted and 
used to train SVM. Pseudocode for the algorithm is shown in Fig. 4.   

 

 Cuckoo Search Instance Selection Algorithm 
 

Notation 

D: Dataset 

NF: Number of Folds for Cross Validation 

NI: Number of Iterations 

NS: Number of Selected Instances 

Min: Minimum number of selected instances 

G(x): Fitness Function 

IM: Instance mask 

CB: Current Best 

TS: Training Subset 

CA: Classification Accuracy 
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ACA: Average Classification Accuracy 

MaxG: Maximum Generation 

N: Population Size 

NF: Number of Folds for SVM Cross Validation 

GB: Global Best 

CA: Classifier Accuracy 

FT: User-defined Fitness Threshold 

Input: NF, NI, MaxG, N, Min, D, FT 

Output: ACA 

1. Start CSISA 
2. For i = 1 to NF 

2.1. Select subset (i.e. 9/10 of dataset) for training 
2.2. Pass training subset to CISA for instance selection 
2.3. Start CISA  

2.3.1. Define G(x) for cuckoo nests 
2.3.2. Initialize Parameters 
2.3.3. For a = 1 to N 

2.3.3.1. Initialize solution for 𝑛𝑒𝑠𝑡𝑎  
2.3.4. End for 
2.3.5. Evaluate G(x) and select CB 
2.3.6. GB = CB 

2.3.6.1. While (j < MaxG) 
2.3.6.1.1. For k = 1to N 

2.3.6.1.1.1.1. Construct new solutions by randomly selecting cuckoos using levy 
flight 

2.3.6.1.1.1.2. Convert new solutions to binary 
2.3.6.1.2. End k 
2.3.6.1.3. For a = 1 to N 

2.3.6.1.3.1. Replace low quality nest by generating new solutions.  Low quality nests 
are discovered with a defined probability 

2.3.6.1.3.2. Convert new solutions to binary 
2.3.6.1.4. End a 
2.3.6.1.5. For a = 1 to N 

2.3.6.1.5.1. Evaluate G(𝑥𝑎) for new 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎 
2.3.6.1.6. End a 
2.3.6.1.7. If GB > FT 

2.3.6.1.7.1. End While 
2.3.6.1.8. End if 

2.3.6.2. End While 
2.3.6.3. Get NS from GB 
2.3.6.4. If NS < Min 

2.3.6.4.1. Add (Min - NS) instances to GB 
2.3.6.5. End if  
2.3.6.6. Output GB 

2.4. End CISA  
2.5. Train SVM model on instances selected by GB 
2.6. Test model on current test data (i.e. 1/10 of dataset) 
2.7. Sum CA 
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3. End for  
4. Calculate ACA, over number of folds 
5. Output ACA; ACA = CA / NF 
6. End CISA_SVM 

Fig. 3. Pseudocode for CISA 

 

Bat Instance Selection Algorithm 
 

Notation 

D: Dataset 

NF: Number of Folds for Cross Validation 

NI: Number of Iterations 

NS: Number of Selected Instances 

Min: Minimum number of selected instances 

G(x): Fitness Function 

IM: Instance mask 

CB: Current Best 

TS: Training Subset 

PR: Pulse Rate 

L: Loudness 

CA: Classification Accuracy 

ACA: Average Classification Accuracy 

MaxG: Maximum Generation 

N: Population Size 

NF: Number of Folds for SVM Cross Validation 

GB: Global Best 

CA: Classifier Accuracy 

FT: User defined Fitness Threshold  

Input: NF, NI, MaxG, N, Min, D, FT 

Output: ACA 

1. Start BISA_SVM 
2. For i = 1 to NF 

2.1. Select subset (i.e. 9/10 of dataset) for training 
2.2. Pass training subset to BISA for instance selection 
2.3. Start BISA  

2.3.1. Define G(x) for bats 
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2.3.2. Initialize Parameters 
2.3.3. For a = 1 to N 

2.3.3.1. Initialize solution for 𝑏𝑎𝑡𝑎  
2.3.3.2. Define 𝑝𝑟𝑎 for 𝑏𝑎𝑡𝑎  
2.3.3.3. Define 𝑙𝑎 for 𝑏𝑎𝑡𝑎  

2.3.4. End for 
2.3.5. Evaluate G(x) and select CB 
2.3.6. GB = CB 
2.3.7. While (j < MaxG) 

2.3.7.1. For k = 1to N 
2.3.7.1.1. Construct new frequency for 𝑏𝑎𝑡𝑘 by using 

 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 −  𝑓𝑚𝑖𝑛) 𝛽 
2.3.7.1.2. Construct new velocity for 𝑏𝑎𝑡𝑘 using 

 𝑉𝑘𝑡 =  𝑉𝑘𝑡−1 + (𝑋𝑘𝑡 −  𝑋∗) 𝑓𝑘 
2.3.7.1.3. Generate Random Number, R 
2.3.7.1.4. If R > 𝑝𝑟𝑘 

2.3.7.1.4.1. Construct a solution around GB 
2.3.7.1.5. End if 
2.3.7.1.6. Convert 𝑏𝑎𝑡𝑘 to binary 

2.3.7.2. End k 
2.3.7.3. For a = 1 to N 

2.3.7.3.1.1. Generate Random Number, R 
2.3.7.3.1.2. Evaluate G(𝑥𝑎) for new solution 
2.3.7.3.1.3. Replace previous 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎 with new 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎, if new solution it is 

better, and if if R  < 𝑙𝑎 
2.3.7.4. End a 
2.3.7.5. If GB > FT 

2.3.7.5.1. End While 
2.3.7.6. End if  

2.3.8. End While 
2.3.9. Get NS from GB 
2.3.10. If NS < Min 

2.3.10.1. Add (Min - NS) instances to GB 
2.3.11. End if  
2.3.12. Output GB 

2.4. End CISA  
2.5. Train SVM model on instances selected by GB 
2.6. Test model on current test data (i.e. 1/10 of dataset) 
2.7. Sum CA 

3. End for  
4. Calculate ACA, over number of folds 
5. Output ACA; ACA = CA / NF 
6. End CISA_SVM 

Fig. 4. Pseudocode for BISA 

 

3.1 Fitness Function 

As aforementioned, the primary difference between the proposed filter-based and wrapper-
based techniques is in their objectives. This section presents the fitness function for the 
proposed filter-based and wrapper-based techniques. 
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3.1.1 Fitness Function for the Proposed Filter-based Techniques 

Fitness function for the proposed filter-based BISA and CSISA is shown in equation (13). 
The fitness function considers both percentage reduction and boundary instances. More 
weight is assigned to agents with high percentage reduction and high number of boundary 
instances. The fitness function evaluation begins by calculating the total number of instances 
in each agent (𝛼). Furthermore, the algorithm calculates the number of instances selected by 
each agent (𝛽) and the number of boundary instances selected by each agent (𝛾). The number 
of instances selected by an agent is obtained by adding all the non-zero elements in the 
instance mask of the agent. Also, the number of boundary instances selected by an agent is 
obtained, by firstly passing its selected instances to a boundary detection algorithm for 
boundary instance selection. Furthermore, the algorithm selects boundary instances, and the 
number of selected boundary instances is calculated and used for fitness value evaluation. In 
this study, clustering-based boundary detection algorithm, proposed by Chen et al. [27], is 
used for boundary instance selection. Finally, 𝛼, 𝛽 and 𝛾 are used to calculate the fitness 
value, as shown in equation (13).  

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = ��100 ∗  𝛼−𝛽
𝛼

 �  +  �𝛾
𝛽
∗ 100��

2
�

            (13) 

where 𝛼 = total number of instances in an instance mask, 𝛽 = number of selected instances in 
an instance mask and  𝛾 = number of selected boundary instances. 

3.1.2 Fitness Function for the Proposed Wrapper-based Techniques 

Fitness function utilized by the wrapper-based instance selection techniques is shown in 
equation (14). The primary objective of the proposed wrapper-based techniques is to 
improve the classification accuracy of SVM. Hence, the fitness function is calculated by 
computing the classification accuracy of the candidate solution constructed by each agent. 
That is, for each candidate solution, a classification model is constructed by training the 
constructed solution (i.e. the reduced subset) on a classifier. Afterwards, the constructed 
model is evaluated by testing it on a new dataset (test dataset), and the resultant classification 
accuracy is used as the fitness value for the candidate. The candidate with the best fitness 
value is the candidate with the highest classification accuracy. The best candidate will be 
selected and used to build the final classifier.  

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 =  𝛼𝑖               (14)
  

where αi is the classification accuracy for each candidate in the solution space.  

3.2 Extracted Features 

Prior to classification, some set of spam features are extracted from each email in the spam 
email datasets used for evaluation. After extraction, the features are formatted according to 
the input format required by libSVM [46], and saved in a text file for easy processing. 
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LibSVM is the SVM library used in this research for all experiments. Details on the 
extracted spam features are described in this section. The features used for phishing email 
classification is similar to the features used in one of our previous studies [4].  

3.2.1 Word-Based Features 

For this feature, different words are extracted from all emails in the dataset, using the  
extraction technique proposed by Paul Graham [47]. Moreover, spam score for each word is 
calculated, and words with high spam score are selected and used as a feature. In this study, 
a total of 𝑁 word-based features are extracted, where 𝑁 is the number of words with spam 
score greater than, or equal to 0.9999. 

3.2.2 Term Frequency + Inverse Sentence Frequency 

This feature is a combination of term frequency (TF) and inverse sentence frequency (ISF). 
For each email, TF for each word is calculated using equation (15), and ISF for each 
sentence in an email is calculated using equation (16). Finally, as shown in equation (17), 
sum of the product of TF and ISF is calculated and used as a feature. In this study, we 
converted this feature to binary by assigning 0 to emails with TF-ISF value less than 100, 
and 1 to emails with TF-ISF values greater than 100.  This feature was also used by Shams 
and Mercer [48]. 

𝑇𝐹𝑡 = �1 + log(𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦), 𝑖𝑓 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑡 > 0
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                     

�           (15) 

𝐼𝑆𝐹𝑡 = log 𝑁
𝑆𝐹𝑡

 ,                (16)
     
 𝑤ℎ𝑒𝑟𝑒 𝑁 𝑖𝑠 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ,𝑎𝑛𝑑 𝑆𝐹𝑡  𝑖𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 𝑤𝑖𝑡ℎ 𝑡𝑒𝑟𝑚 𝑡  

∑ 𝑇𝐹𝑡𝑡  ×  𝐼𝑆𝐹𝑡                   (17) 

3.2.3 Complex Words 

Words with more than two syllables are called complex words. In this study, emails 
containing less than fifteen complex words are assigned the value of 0, and emails containing 
more than fifteen complex words are assigned the value of 1. This feature was proposed by 
Shams and Mercer [48]. 

3.2.4 Simple Words 

Simple words refers to words with one or two syllables. A Boolean value of 0 is recorded if 
an email contain less than fifty simple words, and 1 is recorded if an email contain more than 
fifty simple words. This feature is similar to the feature used by Shams and Mercer [48]. 

3.2.5 Spam Words 

Some list of spam words, provided by Sham and Mercer [48], are extracted and used as 
features. A Boolean value of 1 is recorded if an email contain more than one spam word, and 
0 is recorded otherwise.  
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3.2.6 Total HTML Tags 

HTML tags are keywords that defines how web browsers formats and displays contents [49], 
such as text and images. HTML tags are extracted from each email and a Boolean value of 1 
is recorded if an email contain more than one HTML tag and 0 is recorded otherwise. This 
feature was also used by authors in [48]. 

3.2.7 Document Length 

Document length refers to the number of sentences in an email document. A Boolean value 
of 1 is recorded if an email contain more than one sentence, and 0 is recorded otherwise. 
This feature was proposed by Shams and Mercer [48]. 

3.2.8 Non Anchor Tags 

HTML anchor tags (<a><a/>), are tags used to navigate to other web pages. All tags that are 
not anchor tags (such as <p> and <h1>), are extracted from each email and a Boolean value 
is recorded. Emails containing more than one non-anchor tag is assigned the value of 1, and 
emails containing one or no non-anchor tag is assigned the value of 0. This feature was also 
used by Shams and Mercer [48]. 

3.2.9 Stop Words 

Stops words are words frequently used in a specific language. Some list of stop words, 
provided by Shams and Mercer [48], are extracted from each email and a Boolean value is 
recorded.   Emails with stop words greater than hundred, are assigned the value of one, and 
emails containing less than hundred stop words are assigned the value of zero. This feature 
was proposed by Shams and Mercer [48]. 

3.2.10 Presence of ‘Link’, ‘Click Here’ in URL Text of a Link 

Most spam or phishing email typically requires users to click on a link, which re-directs 
them to a spam or phishing websites. Hence, for each email, URLs are extracted, and a 
Boolean value of 1 is recorded based on whether the URL text contains the following words: 
“Click Here” or “Link”. Otherwise, 0 is recorded. Similar feature was used by authors in [4]. 
 

3.2.11 Domain Name Disparity 
Domain names are used to detect different web pages. For example, the domain name of 
“https://www.google.com/” is “google.com”. Domain names in the body of legitimate emails, 
should be similar to the sender’s domain name. If there is a disparity, the email is likely a 
spam email. Domain names from the body section of each email are extracted and compared 
to the domain name used to send the email. If there is a disparity, the email is assigned the 
value of one, otherwise, the email is assigned the value of zero. This feature was also used in 
[4] and [50]. 
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END
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No

 
Fig. 5. Flowchart for proposed NI Algorithm 

3.2.12 Sum of Distinct Domain 

As aforementioned, domain names are used to detect web pages. Domain names are 
extracted from each email and the total number of domain names is recorded and used a 
continuous feature. Domain names that appears more than once are counted only once. This 
feature was also used by authors in [51] and [4]. 
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3.2.13 SpamAssassin Feature  
SpamAssassin is a reliable spam email filter, currently used by some organizations. In this 
study, SpamAssassin is used to classify each email and a Boolean value of 1 or 0 is assigned 
to an email based on the output of SpamAssassin. An untrained offline version of 
SpamAssassin is used with the default threshold value and rule weights. Similar feature was 
used by Akinyelu et al. [4] and Fette et al. [51]. 
 
3.2.14 HTML Content Type 
 
Emails are of different formats and content types. These standards and formats are defined 
by MIME standards. Email content type could be “ordinary text”, or “HTML”. Ordinary text 
content type is defined by “text/plain”, and “HTML” content type is defined by “text/html”. 
Fette et al. [51], noted that emails with “HTML” content type, are likely scam emails. Hence, 
in this study, emails with “text/html” are assigned the value of one, otherwise, emails are 
assigned the value of zero. Similar feature was also used in [4] and [51]. 

3.2.14 Total Email Links 

Zhang and Y. Yuan [52] pointed out that emails containing many URLs are likely spam or 
phishing emails. Hence, email links are extracted from each email and the total number of 
links are recorded and used as a continuous feature. This feature was also used by authors in 
[4] and [52]. 

3.3 Experimental Setup 

The proposed techniques are validated on datasets containing three popular e-fraud types: 
credit card fraud, phishing email and spam email. The first dataset (Dataset 1) contain 3500 
ham email provided by SpamAssassin [53] and 500 phishing emails provided by Jose 
Nazario [54]. Currently, the phishing emails are no longer available online. Interested users 
are advised to contact the dataset provider, Jose Nazario [54]. The second dataset (Dataset 2) 
contain 3500 ham emails and 500 spam emails provided by SpamAssassin [53]. The third 
dataset (Dataset 3) contains 2787 ham emails and 1813 spam emails, provided by UCI data 
repository [55]. The fourth dataset (Dataset 4) contains 492 credit card fraud transactions and 
4508 legitimate card transactions, provided by Andrea [56]. Table 3 shows a summary of the 
four datasets. In addition, robustness of the techniques are further demonstrated by validating 
them on 20 datasets, provided by the popular UCI dataset repository [55].  

The performance of CSISA and CISA is compared to standard SVM and eight existing 
instance selection techniques in terms of predictive accuracy, classification speed and 
storage reduction. The compared techniques include: CLUS_IS [27], KNN_IS [6], PSC [57], 
DROP 3 [26], DROP 5 [26], GCNN [58], POC-NN [59] and ADR-Miner [17]. All 
experiments are performed using the popular 10 times, 10 fold cross validation technique. 
Furthermore, sixteen features are extracted from Dataset 1 and fifteen features are extracted 
from Dataset 2. The features extracted from Dataset 1 is similar to the features described in 
one of our previous studies [4]. Also, the features extracted from Dataset 2 are described in 
Section 3.2. After feature extraction, information gain (IG) for all the extracted features was 
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generated and features with high IG are used for training. For Dataset 1, the best 9 features 
are used for training, and for Dataset 2, the best 10 features are used for training. Dataset 3, 
Dataset 4 and the UCI datasets, were already processed by their providers, hence feature 
extraction was not necessary. All the datasets are formatted according to the input format 
required by libSVM [46] - the SVM Library used in this study. Moreover, all the features are 
scaled down using Gaussian Transformation.  

Given 𝑁  training instances, utilizing all the training set for training is time consuming. 
Instead of utilizing the entire training set, training a classifier on a reduced subset, void of 
superfluous or harmful instances, will not significantly affect the classification accuracy of 
the classifier, rather, it can lead to similar or improved classification accuracy [22]. On this 
basis, the proposed filter-based techniques are designed to use only a subset of the entire 
training set for instance selection. That is, for all experiments, 𝑛 instances are passed to 
BISA and CSISA for processing, where 𝑛 < 𝑁. This implies that BISA and CSISA searches 
an instance space consisting of 𝑛 instances, instead of an instance space consisting of 𝑁 
instances (i.e. the entire training dataset). Furthermore, for all the experiments, different set 
of parameters are evaluated, with the aim of determining the best parameters suitable for the 
proposed techniques and also demonstrating the robustness of the proposed techniques. 
Results for the best parameters are reported in section 3.4. Unlike the filter-based techniques, 
the wrapper-based techniques are designed to use the entire training set. That is, they are 
designed to search through the entire training data for relevant instances. 

For all experiments, RBF kernel is used. RBF kernel requires the tuning of two parameters: 
𝐶 𝑎𝑛𝑑 𝛾. As suggested by Hsu et al. [60], this study used exponential growing sequence of 
𝐶 𝑎𝑛𝑑 𝛾 . Furthermore, all experiments were performed on a desktop computer with the 
following specification: Windows 7, 64 bits, 8GB RAM, Intel core (TM) i7-4770S CPU @ 
3.10GHz. Tables 1 and 2 shows the parameters used for all experiments. The parameters are 
similar to the parameters used by authors in [61] and [62]. 

The following key are used for the Tables:  NA-Number of agents, NI-number of instances, 
GB-global best, APA-Average Prediction Accuracy, FP-False Positive, FN-False Negative, 
R-Recall, Pr-Precision, FM-F-Measure, T-Time, 𝑁𝑔 = Number of generations 

Table 1. Parameter used for CISA 

Discovery 
Rate 

Tolerance 𝑵𝒈(Filter) 𝑵𝒈(Wrapper) Beta 

0.25 1.0𝑒−5 5 3 1.5 
 

Table 2. Parameter used for BISA 

Loudness Pulse 
Rate 

𝑁𝑔(Filter) 𝑁𝑔(Wrapper) Minimum 
Frequency 

Maximum 
Frequency 

0.5 0.5 5 3 0 2 
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Table 3. Datasets used for Experiments 

Dataset Name Size Ham Spam/Phishing 

Dataset 1 4000 3500 Spam: 500 (12.5%) 

Dataset 2 4000 3500 Phishing: 500 (12.5%) 

Dataset 3 4600 2787 Spam: 1813 (39.4%) 

Dataset 4 5000 4508 Credit Card: 492 (9.84%) 

 

3.4 Results and Discussion 

Tables 4 - 6 shows the result for KNN_IS and CLUS_IS, for phishing email, credit card 
fraud and spam email. As shown in both tables, CLUS_IS yielded good classification 
accuracy, however, its classification speed is poor. KNN_IS yielded better classification 
speed and accuracy, compared to CLUS_IS. Overall, CLUS_IS produced good classification 
accuracy, but at the expense of speed. KNN_IS produced better classification accuracy and 
speed compared to CLUS_IS.  

Tables 4 – 6 shows the credit card fraud, spam and phishing email result for the proposed 
filter-based CSISA and BISA. Also, Tables 9 – 11 shows the credit card fraud, spam and 
phishing email result for the proposed wrapper-based CSISA and BISA. As shown in Tables 
4 - 6, the filter-based techniques correctly classified over 96% credit card transactions, in 
less than 85 seconds. Moreover, they correctly classified over 99% phishing emails within 50 
seconds. Additionally, they correctly classified over 95% spam emails in less than 62 
seconds. Also, as shown in the Tables, all the techniques requires a maximum of 10% of the 
training set to produce the above-mentioned results. Moreover, the filter-based techniques 
require a maximum of 700 instances to produce robust classification models. As shown in 
Tables 9 - 11, the wrapper-based techniques outperform the filter-based techniques, in terms 
of classification accuracy. However, the filter-based techniques performed better, in terms of 
classification speed and storage reduction. Overall, all the techniques produced good results, 
demonstrating their credibility for instance selection. 

Tables 4-6 shows the credit card fraud, spam and phishing email results for CLUS_IS, 
KNN_IS, standard SVM, BISA and CSISA. As shown in the Tables, the filter-based 
techniques improved SVM training speed by over 93%, without significantly affecting SVM 
classification quality. Moreover, they outperform CLUS_IS and KNN_IS, in terms of 
classification speed and storage reduction. Additionally, Tables 9-11 shows the credit card 
fraud, spam and phishing email results produced by standard SVM and the wrapper-based 
techniques. As shown in the Tables, the wrapper-based techniques improved SVM training 
speed by over 46%, and simultaneously improved SVM classification accuracy. The 
wrapper-based techniques also reduced the training dataset by an average of 50%. Table 7 
shows the result for CLUS_IS [27], KNN_IS [6], PSC [57], DROP 3 [26], DROP 5 [26], 
GCNN [58] , POC-NN [59] and the filter-based BISA and CSISA. As shown in the Table, 
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the proposed techniques outperform the seven compared techniques, in both classification 
accuracy and speed.  

Tables 8 and 13 reports the classification accuracy, speed and storage reduction percentage 
produced by standard SVM and the proposed techniques, for 20 UCI datasets. As shown in  
Table 8, for each dataset, the best classification speed is underlined. As reported, the filter-
based techniques significantly improved SVM classification speed and storage reduction for 
all the 20 datasets, without meaningfully affecting SVM classification accuracy. Also, as 
shown in Table 13, for each dataset, the best classification accuracy is underlined. As 
reported in the table, the wrapper-based techniques consistently produced better predictive 
accuracy in 75% (15 out of 20) of the datasets, compared to standard SVM. They also 
produced better classification speed and reduced the training dataset size by an average of 
50%. Table 13 shows the result for ADR-Miner [17] (an existing wrapper-based technique). 
As shown in the Table, CSISA and BISA outperform ADR-Miner in 90% (9 out of 10) 
datasets used for evaluation. Table 12 shows the phishing email result for the proposed 
techniques and four existing ML-based phishing email detection techniques. As shown in the 
Table, the wrapper-based techniques outperform three of the four techniques.  

Finally, two sample, Z-Test statistical analysis was performed to evaluate the credibility of 
all the results. The analysis was performed with the primary objective of showing (with 95% 
confidence level) that the proposed filter and wrapper based techniques are significantly 
faster than standard SVM. As shown in Tables 14 and 15, the filter-based and wrapper-
based techniques significantly improve SVM classification speed.  

4. Conclusion 
SVM is a popular ML algorithm that has been widely applied to classification and regression 
problems. However, SVM classification speed decreases with increase in dataset size. This 
paper propose two filter-based and wrapper-based instance selection techniques for 
improving SVM classification speed and accuracy. The primary difference between the filter 
and wrapper based techniques is in their objectives. The filter-based techniques are designed 
with the objective of improving SVM classification speed, and the wrapper-based techniques 
are designed with the primary objective of improving SVM classification accuracy and speed. 
The filter-based techniques are very useful for applications (such as video surveillance and 
intrusion detection) that requires very fast online training of large datasets. Also, the 
wrapper-based techniques are useful for applications (such as spam email and phishing email 
classifiers) that are very sensitive to slight drop in classification accuracy.  

The proposed techniques are validated on 24 datasets. Initially, they are evaluated on 
datasets containing three popular e-fraud types: credit card fraud, phishing email and spam 
email. Furthermore, they are evaluated on datasets containing 21 other problems obtained 
from UCI dataset repository. Experimental results show that the filter-based techniques 
excellently improved SVM training speed in 100% of the datasets, without significantly 
affecting SVM classification quality. Also, results shows that the wrapper-based techniques 
improved SVM predictive accuracy in 74% of the datasets (17 out of 23), and 
simultaneously improved SVM training speed. Additionally, experimental result show that 
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the proposed techniques produced excellent storage reduction and speed-accuracy tradeoff. 
Finally, two-samples Z-test statistical analysis was performed to evaluate the speed of the 
proposed techniques, and experimental results reveal that the filter and wrapper based 
techniques significantly improve SVM classification speed. Overall, as shown in all the 
results, the proposed filter and wrapper based techniques are very fast, accurate and reliable 
SVM-based e-fraud detection and instance selection techniques. 

Supervised learning algorithms (such as SVM) and other ML algorithms may not produce 
optimal or accurate results when applied to anonymized datasets. Riyazuddin and Balaram 
[63] proposed a novel pattern anonymization technique by using feature set partitioning in 
combination with data restructuring. The proposed technique was predominantly designed to 
improve the performance of supervised learning algorithms, when applied to anonymized 
datasets. Data anonymization is an interesting domain, and an avenue for further research.  

 

Table 4. Filter-based Techniques vs existing filter-based techniques for Credit Card Fraud  

Technique APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage Reduction 
CSISA 96.94 99.20 1.87 14.04 85.96 85.54 84.97 34.72 3.18 
BISA 97.40 99.20 1.56 12.14 87.86 87.43 87.07 84.88 7.15 

CLUS [27] 98.47 99.4 0.46 11.31 88.69 95.48 91.9 684.06 41.67 
KNN [6] 92.5 97.4 7.84 4.41 95.59 58.83 72.76 259.22 11.11 

Standard SVM 98.83 99.4 0.29 9.23 90.77 97.07 93.79 2072.99 0 
 

Table 5. Filter-based BISA and CSISA vs existing filter-based techniques for Phishing Email  

Technique APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage (%) 
CSISA 99.31 100 0.45 2.34 97.66 97.06 97.22 30.54 5.90 
BISA 99.43 100 0.33 2.28 97.72 97.79 97.62 45.62 8.92 

CLUS [27] 99.53 100 0.23 2.16 97.84 98.47 98.03 337.46 41.67 
KNN [6] 99.59 100 0.25 1.56 98.44 98.34 98.3 244.15 5.56 

Standard SVM 99.66 100 0.08 2.2 97.8 99.47 98.52 943.24 0 
 

Table 6. Filter-based BISA and CSISA vs existing filter-based techniques for Spam Email  

Technique APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage (%) 
CSISA 96.31 97.50 3.59 4.40 95.60 79.58 86.60 39.63 5.73 
BISA 96.36 97.50 3.57 4.14 95.86 79.52 86.84 46.03 6.27 

CLUS [27] 96.44 100 2.61 10.28 89.72 84.41 85.35 311.98 41.67 
KNN [6] 95.57 97.5 4.52 3.8 96.2 75.77 84.58 170.38 11.11 

Standard SVM 96.66 97.5 3.13 4.8 95.2 81.28 87.62 953.94 0 
 

Table 7. Filter based BISA and CSISA vs Other Techniques for Spambase 

Technique APA(%) T(s) 
BISA 86.71 96.87 
CISA 88.15 91.22 
KNN_IS [6] 85.59 758.94 
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CLUS_IS [27] 92.70 7375.75 
PSC [57] 71.95 189.57 
DROP 3 [26] 78.44 3782.57 
DROP 5 [26] 78.72 2226.42 
GCNN [58] 73.54 348.56 
POC-NN [59] 75.37 735.08 

 

Table 8. Filter-based BISA and CSISA vs Standard SVM for UCI Datasets  
Dataset Name CSISA BISA SVM 

Accuracy Storage Time Accuracy Storage Time Accuracy Storage Time 
Abalone 52.96 5.58 42.28 53.21 8.68 65.77 55.71 0 2010 
Balance Scale 88.71 29.41 29.82 90.52 46.11 49.64 93.71 0 101.1 
Breast Tissue 58.10 44.17 7.24 57.70 45.01 7.20 64.6 0 15.98 
Bupa 62.21 27.59 14.89 66.56 45.10 25.52 71.56 0 64.81 
credit-g 62.21 23.14 14.89 66.56 36.28 25.52 75.95 0 299.9 
Cleaveland 59.59 27.06 12.02 60.90 44.39 19.56 63.21 0 53.55 
Ecoli 84.06 28.60 16.41 85.82 45.15 24.61 87.36 0 62.1 
Glass  61.05 26.76 9.42 63.52 44.48 14.82 65.67 0 33.95 
Hungarian 63.34 27.26 14.69 64.03 45.08 24.20 63.86 0 52.12 
Iris 94.47 29.65 6.14 94.73 42.84 9.53 95.5 0 21.45 
Liver 62.56 27.68 15.96 65.24 45.40 27.58 72.47 0 58.26 
Pima Indians 74.25 29.69 42.91 75.03 46.47 70.93 76.92 0 126.7 
Post Operative 71.63 55.94 6.90 71.25 55.92 7.04 71.25 0 11.87 
Transfusion 77.74 29.84 32.06 78.09 46.62 53.35 78.61 0 135.2 
Vertebral-3c 82.29 27.55 14.82 84.16 44.92 21.5 85.61 0 53.51 
Voting 94.09 28.58 18.73 94.93 45.47 30.86 95.77 0 83.07 
Waveform 82.81 4.66 51.03 83.89 7.28 79.05 86.98 0 2501 
Wine 96.29 26.64 5.29 97.59 43.93 8.75 97.47 0 32.58 
Yeast 55.48 18.19 50.06 57.39 28.22 80.07 59.45 0 306 
Zoo 90.40 44.66 7.32 91.40 45.54 7.66 95 0 17.74 
Average 73.71 28.13 20.64 75.13 40.64 32.66 77.83 0 302.04 

 

Table 9. Wrapper-based BISA and CSISA vs standard SVM for Credit Card Fraud 

Technique APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage (%) 
CSISA 98.83 99.60 0.26 9.57 90.43 97.54 93.75 649.95 44.1 
BISA 98.84 99.60 0.29 9.07 90.93 97.26 93.92 828.73 50.01 

Standard SVM 98.83 99.4 0.29 9.23 90.77 97.07 93.79 2072.99 0 
 

Table 10. Wrapper-based BISA and CSISA vs standard SVM for Phishing Email 

Technique APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage (%) 
CSISA 99.62 100 0.13 2.18 97.82 99.14 98.35 378.12 47.83 
BISA 99.62 100 0.13 2.14 97.86 99.1 98.37 409.69 50.1 

Standard SVM 99.66 100 0.08 2.2 97.8 99.47 98.52 943.24 0 
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Table 11. Wrapper-based BISA and CSISA vs standard SVM for Spam Email 

Technique APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage (%) 
CSISA 96.92 99.25 2.89 4.4 95.6 82.73 88.56 454.91 46.21 
BISA 96.80 97.75 3.11 3.86 96.14 81.56 88.21 442.32 50.03 

Standard SVM 96.66 97.5 3.15 4.66 95.34 81.25 87.67 853.15 0 
 

Table 12. Wrapper-based BISA and CSISA vs Existing Techniques 

Technique APA(%) FP(%) FN(%) R(%) Pr(%) FM(%) 
CSISA 99.62 0.13 2.18 97.82 99.14 98.35 
BISA 99.62 0.13 2.14 97.86 99.1 98.37 

Akinyelu and Adewumi [4] 99.70 0.06 2.50 97.50 99.47 98.45 
Andre et al [3] 99.13 0.20 6.39 93.61 98.26 95.88 
Fette et al. [51] 99.49 0.13 3.62 96.38 98.92 97.64 

Zhang and Yuan [52] 95.51 - - 96.18 95.25 95.71 
 

Table 13. Wrapper-based BISA and CSISA vs Standard SVM and ADR-Miner for UCI Datasets 

Dataset 
Name 

CSISA BISA ADR-Miner Standard SVM 
Accu Stor Time Accu Stor Time Acc

u 
Stor Time Accu Stor Time 

Abalone 56.7 37.9 746.0 56.4 50.0 1014.0 - - - 55.7 0 2010 
Balance Scale 91.5 42.3 74.0 91.5 50.5 81.9 - - - 93.7 0 101.1 
Breast Tissue 69.5 47.4 14.2 67.6 50.7 13.8 60.6 24.0 - 64.6 0 15.98 

Bupa 69.9 40.0 39.3 69.8 49.9 44.5 - - - 71.6 0 64.81 
credit-g 75.9 39.7 150.2 75.8 49.8 179.6 74.1 19.3  76.0 0 299.9 

Cleaveland 64.9 38.6 33.5 64.1 49.8 40.0 - - - 63.2 0 53.55 
Ecoli 89.3 44.5 41.6 88.1 50.3 46.3 81.3 21.3 - 87.5 0 62.1 
Glass 71.1 39.6 24.9 69.7 50.4 29.3 69.6 31.4 - 65.7 0 33.95 

Hungarian 67.8 37.2 33.5 66.3 49.8 41.8 - - - 63.9 0 52.12 
Iris 97.7 46.7 17.0 96.6 49.7 17.8 92.6 42.1 - 95.5 0 21.45 

Liver 71.5 39.3 41.7 70.2 50.6 44.6 58.6 17.6 - 72.5 0 58.26 
Pima Indians 78.4 38.7 102.4 77.2 49.7 111.6 - - - 76.9 0 126.7 

Post 
Operative 

71.5 56.4 12.1 72.1 56.7 11.6 - - - 71.3 0 11.87 

Transfusion 79.2 38.2 84.8 79.5 50.3 95.9 72.3 21.9 - 78.6 0 135.2 
vertebral-3c 87.7 42.3 35.0 86.8 49.9 37.8 83.6 23.3 - 85.6 0 53.31 

Voting 96.5 43.9 49.2 96.5 50.2 58.0 95.5 12.0 - 95.8 0 83.07 
Waveform 86.8 39.8 1300 86.8 50.0 1597 - - - 87.0 0 2501 

Wine 97.8 49.1 17.7 97.9 50.2 17.4 - - - 97.5 0 32.58 
Yeast 60.9 40.7 185.5 60.9 50.0 209.5 - - - 59.5 0 306 
Zoo 97.0 50.3 12.3 96.6 50.4 13.0 98.8 52.8 - 95.0 0 17.74 

Average 79.6 42.5 144.3 78.8 50.0 177.1 - - - 78.5 0 288.9
9 

Key: Accu: Accuracy, Stor: Storage 
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Table 14. Statistical Analysis: Filter-based BISA and CSISA 

Technique e-Fraud Type Number of 
Samples 

α = 0.05 
Critical Value = 

1.959963985 
CSISA vs CLUS [27] Credit Card Fraud 100 155.2301779 
CSISA vs  KNN [6] Credit Card Fraud 100 134.1201855 
CSISA vs  Standard 

SVM 
Credit Card Fraud 100 126.473953 

BISA vs CLUS [27] Credit Card Fraud 100 140.1926725 
BISA vs  KNN [6] Credit Card Fraud 100 92.2637861 

BISA vs  Standard SVM Credit Card Fraud 100 123.1792182 
CSISA vs CLUS [27] Phishing Email 100 33.2293053 
CSISA vs  KNN [6] Phishing Email 100 94.24803824 
CSISA vs  Standard 

SVM 
Phishing Email 100 284.6893032 

BISA vs CLUS [27] Phishing Email 100 31.24861442 
BISA vs  KNN [6] Phishing Email 100 74.76322296 

BISA vs  Standard SVM Phishing Email 100 257.0614655 
CSISA vs CLUS [27] Spam Email 100 104.5245697 
CSISA vs  KNN [6] Spam Email 100 48.92006215 
CSISA vs  Standard 

SVM 
Spam Email 100 298.3137267 

BISA vs CLUS [27] Spam Email 100 101.3975132 
BISA vs  KNN [6] Spam Email 100 160.4279588 

BISA vs  Standard SVM Spam Email 100 294.8151401 
 

Table 15. Statistical Analysis: Wrapper-based BISA and CSISA 

Technique e-Fraud Type Number 
of 

Samples 

α = 0.05 
Critical Value = 

1.959963985 
CSISA vs  Standard SVM Credit Card Fraud 100 72.31003626 
BISA vs  Standard SVM Credit Card Fraud 100 70.89500213 

CSISA vs  Standard SVM Phishing Email 100 85.1808948 
BISA vs  Standard SVM Phishing Email 100 90.91963131 

CSISA vs  Standard SVM Spam Email 100 75.31108681 
BISA vs  Standard SVM Spam Email 100 87.91818266 
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