
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 3, Mar. 2018 1348
Copyright ⓒ 2018 KSII

On the Performance of Cuckoo Search
and Bat Algorithms Based Instance

Selection Techniques for SVM Speed
Optimization with Application to e-Fraud

Detection

Andronicus Ayobami AKINYELU1 and Aderemi Oluyinka ADEWUMI 1
1School of Mathematics, Statistics & Computer Science

University of KwaZulu-Natal, Private Bag X54001 Durban, South Africa 4000
[e-mail: akinyelu.ayobami@gmail.com, adewumia@ukzn.ac.za]

* Corresponding author: Adewumi Oluyinka

Received November 11, 2016; revised May 13, 2017; accepted June 11, 2017;
published March 31, 2018

Abstract

Support Vector Machine (SVM) is a well-known machine learning classification algorithm,
which has been widely applied to many data mining problems, with good accuracy. However,
SVM classification speed decreases with increase in dataset size. Some applications, like
video surveillance and intrusion detection, requires a classifier to be trained very quickly,
and on large datasets. Hence, this paper introduces two filter-based instance selection
techniques for optimizing SVM training speed. Fast classification is often achieved at the
expense of classification accuracy, and some applications, such as phishing and spam email
classifiers, are very sensitive to slight drop in classification accuracy. Hence, this paper also
introduces two wrapper-based instance selection techniques for improving SVM predictive
accuracy and training speed. The wrapper and filter based techniques are inspired by Cuckoo
Search Algorithm and Bat Algorithm. The proposed techniques are validated on three
popular e-fraud types: credit card fraud, spam email and phishing email. In addition, the
proposed techniques are validated on 20 other datasets provided by UCI data repository.
Moreover, statistical analysis is performed and experimental results reveals that the filter-
based and wrapper-based techniques significantly improved SVM classification speed. Also,
results reveal that the wrapper-based techniques improved SVM predictive accuracy in most
cases.

Keywords: Support Vector Machines, classification, machine learning, phishing email,
spam email

https://doi.org/10.3837/tiis.2018.03.021 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 3, March 2018 1349

1. Introduction

Support Vector Machine (SVM) is a supervised machine learning (ML) algorithm,
developed in 1995, for binary classification problems [1]. SVM has been applied
successfully to wide range of problems, including pattern recognition [2], email
classification [3, 4] and image processing [5]. However, SVM training speed decreases, with
increase in dataset size. Its training time is approximately 𝑂(𝑛2), where 𝑛, refers to training
dataset size [6]. Many SVM speed optimization techniques have been proposed in literature,
and most of these techniques tackled optimization from different approaches, including:
instance selection, parameter optimization and feature selection. Among these three
approaches, instance selection is one of the most efficient [7, 8]. Instance selection helps in
increasing classification speed, decreasing memory consumption and improving
generalization performance of a classifier. Some instance selection techniques have been
proposed in literature, and majority of them are based on k-NN classifier [7]. Also, some
techniques are based on k-d trees [9], clustering [10, 11], tabu search [12] and sequential
search [13]. However, very few techniques explored Nature Inspired (NI) Algorithms. Some
of the few existing NI-based instance selection techniques focused on: Evolutionary
Algorithm (EA) [14, 15], Memetic Algorithm [16], Ant Colony Optimization (ACO) [17]
and Artificial Immune System (AIS) [18]. This paper propose two wrapper-based and filter-
based nature inspired instance selection techniques for improving SVM classification speed
and accuracy.

Some applications, such as video surveillance and intrusion detection, requires a classifier to
be trained very quickly to enable the classifier identify new target concepts [6]. Moreover,
this applications requires the classifier to be trained on large datasets. For this kind of
applications, SVM training time can be unacceptably high, which renders SVM ineffectual
[6]. Furthermore, even in applications when training can be performed offline (such as spam
email filters), if the size of training data or number of classes is large, then SVM
computational complexity will be too high [6]. Hence, this paper propose two filter-based
instance selection techniques for improving SVM training speed. Fast classification is often
achieved at the expense of classification accuracy, and some applications, such as phishing
and spam email classifiers, are very sensitive to slight drop in classification accuracy. Hence,
the paper also introduces two wrapper-based instance selection techniques, for improving
SVM predictive accuracy. The proposed techniques are not limited to SVM, they can also be
applied to other ML algorithms.

1.1 E-Fraud Detection

Credit card fraud, phishing and spam email are three prominent e-fraud types that has caused
great damages to the global economy in recent times. Spam email refers to unsolicited bulk
email [19], mostly sent by individuals trying to advertise products. Phishing refers to
unsolicited emails, sent by individuals trying to obtain delicate information from users,
usually for the purpose of fraud. Credit card fraud is a term used for fraudulent activities
involving credit or debit cards. These three e-fraud types, has caused colossal loss of

1350 Akinyelu et al.: On the Performance of Cuckoo Search and Bat Algorithms Based Instance Selection
 Techniques for SVM Speed Optimization with Application to e-Fraud Detection

millions of dollars. Between October 1st, 2013 and December 1st, 2014, some companies lost
a total of $179 million US dollars to email scam. Also, seven thousands companies in USA
alone, lost approximately $750 US dollars to phishing, in August 2015 [20]. In 2017, card
fraud worldwide is expected to total $27.69 billion US dollars [21]. Unfortunately, e-fraud is
on the increase, and fraudsters are devising new sophisticated techniques capable of
bypassing existing e-fraud detection systems. Hence, robust e-fraud detection techniques are
highly required.

The remaining part of this paper is structured as follows. Section 2 provides a brief
introduction to instance selection and a brief survey of existing instance selection techniques.
Section 2 also introduces NI techniques and provide a brief survey of existing NI-based
speed optimization techniques. Furthermore, Section 3 provide details on the proposed
techniques and their experimental results. Finally, the paper is concluded in Section 4.

2. Literature Review
A sizable number of NI-based SVM optimization techniques has been proposed in literature.
Most of the proposed techniques focused on feature selection and parameter optimization.
Few studies focused on instance selection. This section present a brief survey of some
existing instance selection, BA and CSA based techniques.

2.1 Instance Selection

A dataset consist of a collection of redundant (superfluous or harmful) and relevant instances.
Superfluous instances refers to instances that contributes negligibly to the decision surface of
a classifier, and harmful instances are instances that leads to high false classifications [22].
Instance selection aims to remove superfluous or harmful instances from a dataset. It is a
very important preprocessing step in data mining [23, 24], and it can be applied to reduce
memory consumption, increase processing speed [25, 26] and improved performance [23].
Instance selection algorithms are divided into two: wrapper and filter [7]. Wrapper-based and
filter-based techniques differs in their selection criterion. The selection criterion of wrapper-
based techniques depends on the predictive accuracy produced by a classifier, while the
selection criteria of filter-based techniques depends on a function, which is independent of a
classifier [7]. Chen et al. [27] proposed a filter-based instance selection technique for
selecting boundary instances. In the study, firstly, clustering algorithm was used to select
cluster centers of positive class instances.
Furthermore, the selected cluster centers were used as references for selecting boundary
instances. Authors designed the algorithm on two postulations. Firstly, negative instances
near cluster centers of a positive class are close to the boundary, and secondly, positive
instances far away from cluster centers of a positive class are close to the boundary. This
implies that, positive instances close to a boundary and negative instances far away from a
boundary contributes less to the decision surface. Authors performed some experiments to
test the efficacy of the proposed technique, and the technique performed well.
In a different work, Hansheng and Venu [28] proposed a new method for improving the
computational speed of SVM. In the proposed method, two techniques were combined:
Principal Component Analysis (PCA) and Recursive Feature Elimination (RFE). PCA was

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 3, March 2018 1351

used to reduce the dataset dimension, and RFE was used to select relevant features, which in
turn, reduced the number of redundant and non-discriminative features. The proposed
technique was tested, and it improved SVM computational speed. Additionally, Panda et al.
[6] proposed a boundary detection algorithm for improving the speed of SVM. The
algorithm was designed to eliminate non-relevant training data instances, that is, instances
that are far from a decision boundary. In the study, Panda et al. [6] designed a function that
assigns high weights to instances close to a decision boundary. The algorithm was tested on
five datasets, and it produced good reduction rates.

2.2 Nature Inspired Techniques

Nature provides some of the best and well-organized ways of solving problems. NI
algorithms are inspired by the intriguing problem solving process of natural systems. They
have been used to solve many real world complex problems including: hostel allocation
problems [29], graph coloring problems [30], annual crop planning problems [31], and email
classification [32]. Some NI technique include: Firefly Algorithm (FFA) [33], Particle
Swarm Optimization (PSO) [34], Simulated Annealing [35], Cuckoo Search Algorithm
(CSA) [36], and Bat Algorithm (BA) [37]. This study presents two filter-based and wrapper-
based instance selection algorithms inspired by CSA and BA. A brief introduction to BA and
CSA is presented next.

2.2.1 Bat Algorithm

BA is inspired by the echolocation behavior of bats. Most bats uses echolocation to locate
food (or preys), to avoid obstacles and to locate their roost in the dark [37]. Bats emits loud
sounds in patterns, and pays attention for echo that may reflect back from objects in the
surroundings [37]. During hunting, bats emit pulses at a very high rate. However, the rate
reduces as they fly closer to a prey [37]. Some bats have good vision, and some have very
good smelling ability [37]. This enhances their ability to efficiently detect preys and avoid
obstacles [37]. This study propose an instance selection algorithm based on standard BA
proposed by Yang [37]. BA was formulated using the following rules [37]:

• All bats use echolocation to detect distance, and they can differentiate between preys
and obstacles

• Bats randomly fly, with velocity 𝑣𝑖 at position 𝑥𝑖 with a fixed frequency 𝑓𝑚𝑖𝑛 ,
varying wavelength ⋋ and loudness 𝐴𝑜 to search for preys. Depending on their
target proximity, bats can regulate their rate of pulse emission, and the wavelength
of their emitted pulses.

• Loudness varies from a large positive value, 𝐴𝑜, to a minimum value, 𝐴𝑚𝑖𝑛.

Pseudocode for BA is given in Fig. 1. The position 𝑥𝑖, velocity 𝑣𝑖 and frequency 𝑓𝑖 for each
virtual bats are firstly initialized. Furthermore, they are updated as follows [37]:

𝑓𝑖 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛) 𝛽, (1)

𝑉𝑖𝑡 = 𝑉𝑖𝑡−1 + �𝑋𝑖𝑡 − 𝑋∗� 𝑓𝑖 , (2)

1352 Akinyelu et al.: On the Performance of Cuckoo Search and Bat Algorithms Based Instance Selection
 Techniques for SVM Speed Optimization with Application to e-Fraud Detection

𝑋𝑖𝑡 = 𝑋𝑖𝑡−1 + 𝑉𝑖𝑡 (3)

where 𝛽 is a randomly generated number between [0, 1], and 𝑋∗ is the current global best
solution. 𝑓𝑖 is used to control speed and range of bat movements. Initially, each bat is
assigned a frequency, randomly selected from [𝑓𝑚𝑖𝑛,𝑓𝑚𝑎𝑥]. Furthermore, new solutions are
generated and a solution is selected from the current best set of solutions [37]. Afterwards, a
new solution is locally generated for each virtual bat in the population, using random walks:

 𝑋𝑛𝑒𝑤 = 𝑋𝑜𝑙𝑑+ ∈ 𝐴𝑡 , (4)

where ∈ is a random number generated between [-1, 1], and 𝐴𝑡 is the loudness of all the bats
at every time interval. Additionally, per iteration, the loudness and pulse rate emission are
regulated as follows:

𝐴𝑖𝑡+1 = ∝ 𝐴𝑖𝑡 , (5)

𝑟𝑖𝑡+1 = 𝑟𝑖0[1 − exp(−𝛾𝑡)] (6)

where ∝ 𝑎𝑛𝑑 𝛾 are BA parameters. The original BA was proposed for continuous problems.
Each virtual bat move in continuous space. However, in instance selection, each bat move in
a binary search space, where 1 indicate that an instance is selected and 0 indicate otherwise.
In this study, sigmoid function, shown in equation (7), is used to convert each bat positions
to binary value.

S�𝑉𝑖𝑡� = 1

1+ 𝑒−𝑉𝑖
𝑡 , (7)

Hence, in place of equation (3), the position of each bat is updated by equation (8):

𝑋𝑖𝑡 = �1 𝑖𝑓 σ ≤ 𝑆�𝑉𝑖𝑡�,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

� (8)

where σ is a random number uniformly drawn from the range [0, 1].

Some BA-based techniques has been proposed in literature. Rodrigues et al. [38] proposed a
feature selection approach based on BA and Optimum-Path Forest (OPF). Rodrigues et al.
[38] used BA for feature selection, and OPF for classification. The technique was tested and
it yielded promising results. In another study, Medjahed et al. [39] used binary CSA to solve
the problem of band selection in hyperspectral image classification. In the study, Binary
CSA was used to select relevant band subset from dataset. The selected features were then
used to train K nearest neighbor (KNN) classifier. The proposed technique produced
improved hyperspectral image classification.

Taha et al. [40] proposed a feature selection approach based on BA and Naïve bayes (NB)
classifier. Authors used BA for feature selection and NB for classification. The hybridized
approach was tested on twelve datasets, and it yielded promising results. Emary et al. [41]
combined BA and rough set theory (RST) to solve feature selection problem. In the study,
BA was used to extract relevant features from a feature space. Also, authors used RST to

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 3, March 2018 1353

design a fitness function, which considered both classification accuracy and feature size.
Authors evaluated the approach and compared it to two other RST-based techniques, and the
proposed approach outperformed both techniques. Laamari and Kamel [42] proposed a
hybrid technique for intrusion detection, based on BA and SVM. In the study, authors used
BA in combination with SVM to solve the problem of intrusion detection. Authors used BA
for feature selection and parameter optimization. The hybrid technique was compared to
PSO-SVM and standard SVM, and it outperformed both techniques.

2.2.2 Cuckoo Search Algorithm

CSA, proposed by Yang [36], is inspired by the parasitic behavior of some species of cuckoo
birds, and the levy flight behavior of some fruit flies and birds species. Some species rely on
other birds for hatching their eggs and feeding their young. These species (called brood
parasites) lay their eggs in nests of other birds [36]. Mostly, they target nests of birds that
newly laid their eggs. Generally, cuckoo eggs hatches earlier than their host eggs, hence, by
instinct, the newly hatched cuckoo throws the host eggs out of its nest, to increase the share
of food provided by the host bird [36]. CSA was developed based on this parasitic behavior
of cuckoos. The following idealized rules were used to develop CSA:

• Each cuckoo lays one egg per time, and randomly distribute its egg to different nest
• The best nest, containing high quality eggs, will survive to the next generation
• Number of host nests is fixed. Also eggs laid by a cuckoo is discovered by the host

bird by a probability of 𝑝𝑎 ∈ [0, 1] . If eggs is discovered, host bird can either
abandon its nest and build a new nest, or throw the discovered eggs away.

Pseudocode for CSA is given in Fig. 2. In the algorithm, new positions for each cuckoo are
generated by performing a levy flight, given in equation (9).

𝑋𝑖
(𝑡−1) = 𝑋𝑖

(𝑡) + 𝛼 ⨁𝐿𝑒𝑣𝑦 (⋋), (9)

where 𝛼 > 0 refers to step size, and it is related to the scales of problem solved. ⨁ refers to
entrywise multiplication. Levy flight provides random walks, drawn from a levy distribution
given in equation (10). The levy distribution has an infinite variance and infinite mean.

𝐿𝑒𝑣𝑦 ∼ 𝑢 = 𝑡−⋋, (1 < ⋋ ≤ 3) (10)

CSA was originally designed for continuous problem. However, in this study, sigmoid
function (shown in equation (11)) is used to convert each cuckoo positions to a binary value
(0 or 1). One indicate that an instance is selected, and zero indicate otherwise.

1354 Akinyelu et al.: On the Performance of Cuckoo Search and Bat Algorithms Based Instance Selection
 Techniques for SVM Speed Optimization with Application to e-Fraud Detection

Bat Algorithm
Objective function 𝑓(𝑥), 𝑥 = (𝑥1, … , 𝑥𝑑)𝑇

Initialize Bat population 𝑥𝑖(𝑖 = 1, 2, … ,𝑛) 𝑎𝑛𝑑 𝑣𝑖

Define pulse frequency 𝑓𝑖 𝑎𝑡 𝑥𝑖

Initialize pulse rates 𝑟𝑖 and the loudness 𝐴𝑖

1. While 𝑡 < 𝑀𝑎𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
1.1. Generate new solutions by adjusting frequency and updating velocities and

solutions
1.2. If (𝑟𝑎𝑛𝑑 < 𝑟𝑖)

1.2.1. Select a solution among the best solutions
1.2.2. Generate a local solution around the selected best solution

1.3. End if
1.4. Generate a new solution by flying randomly
1.5. If (𝑟𝑎𝑛𝑑 < 𝐴𝑖 𝑎𝑛𝑑 𝑓(𝑥𝑖) < 𝑓(𝑥∗))

1.5.1. Accept the new solution
1.5.2. Increase 𝑟𝑖 𝑎𝑛𝑑 𝑟𝑒𝑑𝑢𝑐𝑒 𝐴𝑖

1.6. End if
1.7. Rank the bats and find the current best 𝑥∗

2. End while
3. Post process result and visualization
__

Fig. 1. Pseudocode for Bat Algorithm [37].

S�𝑉𝑖𝑡� = 1

1+ 𝑒−𝑉𝑖
𝑡 , (11)

Hence, in place of equation (9), the position of each cuckoo is updated by equation (12):

𝑋𝑖𝑡 = �1 𝑖𝑓σ ≤ 𝑆�𝑉𝑖𝑡�,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

� (12)

where σ is a random number uniformly drawn from the range [0, 1]. CSA has been used in
literature, to solve different problems. For example, Rajalaxmia [43] solved the problem of
feature selection in Type-2 diabetics using binary CSA and genetic algorithm (GA). In the
study, initially, clustering was used for instance selection, afterwards, CSA and GA was used
for feature selection. Finally, the selected instances and features were used to build a model
for multilayer perceptron (MLP) classifier. In another study, Mousavirad and Ebrahimpour-
Komleh [44] proposed a CSA-based technique for feature selection. In the study, authors
used CSA for feature extraction. Afterwards, the extracted features were encoded in a binary
strings and used to train a k-NN classifier. The proposed approach was evaluated on five
datasets obtained from UCI data repository [45], and it yielded good result.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 3, March 2018 1355

Cuckoo Algorithm via Levy Flight
Objective function 𝑓(𝑥), 𝑥 = (𝑥1, … , 𝑥𝑑)𝑇

Generate initial population of n host nests 𝑥𝑖 (𝑖 = 1, 2, … ,𝑛)

1. While (𝑡 < 𝑀𝑎𝑥𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛)𝑜𝑟(𝑠𝑡𝑜𝑝 𝑐𝑟𝑖𝑒𝑡𝑒𝑟𝑖𝑜𝑛)
1.1. Get a cuckoo randomly Levy flights
1.2. Evaluate its quality or fitness 𝐹𝑖
1.3. Choose a nest among n (say, 𝑗) randomly
1.4. If (𝐹𝑖 > 𝐹𝑗)

1.4.1. Replace j by new solution;
1.5. End if
1.6. A fraction (𝑃𝑎) of worse nests are abandoned and new ones are built
1.7. Keep the best solutions (or nest with quality solutions);
1.8. Rank the solutions and find the current best
1.9. Rank the bats and find the current best 𝑥∗

2. End while
3. Post process result and visualization

__

Fig. 2. Pseudocode for Standard Cuckoo Search Algorithm [36]

3. Proposed Algorithms
This study presents two filter-based and wrapper-based instance selection algorithms for
optimizing SVM training speed and predictive accuracy. The first technique is called Cuckoo
Search Instance Selection Algorithm (CSISA), and the second technique is called Bat
Instance Selection Algorithm (BISA). The main difference between the filter-based and
wrapper-based techniques is in their objectives. The primary objective of the filter-based
techniques is to improve SVM training speed, and the primary objective of the wrapper-
based techniques is to improve SVM predictive accuracy. Fig. 3 shows the pseudocode for
BISA, Fig. 4 shows the pseudocode for CSISA and Fig. 5 shows the flowchart for the two
algorithms.

3.1 Proposed Cuckoo Instance Selection Algorithm

The algorithm starts by initializing the positions for each nest and other parameters,
including 𝑀𝑖𝑛, where 𝑀𝑖𝑛 is the minimum number of instances to be selected for training.
Each nest position is initialized to 0 or 1, where 1 indicates that an instance is selected and 0
indicate that an instance is not selected. Furthermore, the initialized solutions are evaluated
and the current best solution is kept. Afterwards, new solutions are constructed by randomly
selecting different cuckoos through levy flight. The value of each new solution is continuous,
hence, they are converted back to binary values after construction. Furthermore, the quality
(or fitness) of each nest is evaluated and the global best solution is saved. Fitness function
for the filter and wrapper based CSISA are reported in sections 3.1.1 and 3.1.2 respectively.

1356 Akinyelu et al.: On the Performance of Cuckoo Search and Bat Algorithms Based Instance Selection
 Techniques for SVM Speed Optimization with Application to e-Fraud Detection

This process is repeated until a user-defined threshold is reached. Afterwards, the global best
cuckoo is selected and 𝑁 instances are extracted from it, where 𝑁 is the total number of
instances selected by the global best cuckoo. Moreover, 𝑁 is compared to 𝑀𝑖𝑛, and if 𝑁 is
less than 𝑀𝑖𝑛, then 𝑄 additional instances are randomly selected from the training dataset
and added to the global best cuckoo, where 𝑄 = 𝑁 – 𝑀𝑖𝑛. Finally, the global best cuckoo is
selected, and instances with the value of 1 are extracted and used to train SVM.

3.2 Proposed Bat Instance Selection Algorithm

BISA is inspired by the echolocation of bats. It begins by defining the pulse rate and
loudness for each artificial bat and also initializing each bat solution to a binary value, where
1 indicate that an instance is selected and 0 indicate otherwise. Furthermore, fitness value for
each solution is calculated and the best solution is kept. Fitness function for the filter and
wrapper based BISA is reported in section 3.1.1 and 3.1.2 respectively. New solutions are
constructed by constructing new frequency and velocity for each bat using equation (1) and
equation (2) respectively. Afterwards, each solution is evaluated and the global best solution
is updated if a better solution is found. Moreover, a random number (𝑟𝑎𝑛𝑑) is generated and
new solutions are constructed if 𝑟𝑎𝑛𝑑 is greater than a user-defined pulse rate. The new
solutions are retained if 𝑟𝑎𝑛𝑑 is less than a user-defined bat loudness (𝐴𝑖). This process is
repeated until a user-defined threshold is reached. Afterwards, the global best bat is selected
and 𝑁 instances are extracted from it, where 𝑁 is the total number of instances selected by
the global best bat. Moreover, 𝑁 is compared to 𝑀𝑖𝑛, where 𝑀𝑖𝑛 is the minimum number
required training instances. If 𝑁 is less than 𝑀𝑖𝑛, then 𝑄 additional instances are randomly
selected from the training dataset and added to the global best agent, where 𝑄 = 𝑁 – 𝑀𝑖𝑛.
Finally, the global best bat is selected, and instances with the value of 1 are extracted and
used to train SVM. Pseudocode for the algorithm is shown in Fig. 4.

 Cuckoo Search Instance Selection Algorithm

Notation

D: Dataset

NF: Number of Folds for Cross Validation

NI: Number of Iterations

NS: Number of Selected Instances

Min: Minimum number of selected instances

G(x): Fitness Function

IM: Instance mask

CB: Current Best

TS: Training Subset

CA: Classification Accuracy

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 3, March 2018 1357

ACA: Average Classification Accuracy

MaxG: Maximum Generation

N: Population Size

NF: Number of Folds for SVM Cross Validation

GB: Global Best

CA: Classifier Accuracy

FT: User-defined Fitness Threshold

Input: NF, NI, MaxG, N, Min, D, FT

Output: ACA

1. Start CSISA
2. For i = 1 to NF

2.1. Select subset (i.e. 9/10 of dataset) for training
2.2. Pass training subset to CISA for instance selection
2.3. Start CISA

2.3.1. Define G(x) for cuckoo nests
2.3.2. Initialize Parameters
2.3.3. For a = 1 to N

2.3.3.1. Initialize solution for 𝑛𝑒𝑠𝑡𝑎
2.3.4. End for
2.3.5. Evaluate G(x) and select CB
2.3.6. GB = CB

2.3.6.1. While (j < MaxG)
2.3.6.1.1. For k = 1to N

2.3.6.1.1.1.1. Construct new solutions by randomly selecting cuckoos using levy
flight

2.3.6.1.1.1.2. Convert new solutions to binary
2.3.6.1.2. End k
2.3.6.1.3. For a = 1 to N

2.3.6.1.3.1. Replace low quality nest by generating new solutions. Low quality nests
are discovered with a defined probability

2.3.6.1.3.2. Convert new solutions to binary
2.3.6.1.4. End a
2.3.6.1.5. For a = 1 to N

2.3.6.1.5.1. Evaluate G(𝑥𝑎) for new 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎
2.3.6.1.6. End a
2.3.6.1.7. If GB > FT

2.3.6.1.7.1. End While
2.3.6.1.8. End if

2.3.6.2. End While
2.3.6.3. Get NS from GB
2.3.6.4. If NS < Min

2.3.6.4.1. Add (Min - NS) instances to GB
2.3.6.5. End if
2.3.6.6. Output GB

2.4. End CISA
2.5. Train SVM model on instances selected by GB
2.6. Test model on current test data (i.e. 1/10 of dataset)
2.7. Sum CA

1358 Akinyelu et al.: On the Performance of Cuckoo Search and Bat Algorithms Based Instance Selection
 Techniques for SVM Speed Optimization with Application to e-Fraud Detection

3. End for
4. Calculate ACA, over number of folds
5. Output ACA; ACA = CA / NF
6. End CISA_SVM

Fig. 3. Pseudocode for CISA

Bat Instance Selection Algorithm

Notation

D: Dataset

NF: Number of Folds for Cross Validation

NI: Number of Iterations

NS: Number of Selected Instances

Min: Minimum number of selected instances

G(x): Fitness Function

IM: Instance mask

CB: Current Best

TS: Training Subset

PR: Pulse Rate

L: Loudness

CA: Classification Accuracy

ACA: Average Classification Accuracy

MaxG: Maximum Generation

N: Population Size

NF: Number of Folds for SVM Cross Validation

GB: Global Best

CA: Classifier Accuracy

FT: User defined Fitness Threshold

Input: NF, NI, MaxG, N, Min, D, FT

Output: ACA

1. Start BISA_SVM
2. For i = 1 to NF

2.1. Select subset (i.e. 9/10 of dataset) for training
2.2. Pass training subset to BISA for instance selection
2.3. Start BISA

2.3.1. Define G(x) for bats

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 3, March 2018 1359

2.3.2. Initialize Parameters
2.3.3. For a = 1 to N

2.3.3.1. Initialize solution for 𝑏𝑎𝑡𝑎
2.3.3.2. Define 𝑝𝑟𝑎 for 𝑏𝑎𝑡𝑎
2.3.3.3. Define 𝑙𝑎 for 𝑏𝑎𝑡𝑎

2.3.4. End for
2.3.5. Evaluate G(x) and select CB
2.3.6. GB = CB
2.3.7. While (j < MaxG)

2.3.7.1. For k = 1to N
2.3.7.1.1. Construct new frequency for 𝑏𝑎𝑡𝑘 by using

 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛) 𝛽
2.3.7.1.2. Construct new velocity for 𝑏𝑎𝑡𝑘 using

 𝑉𝑘𝑡 = 𝑉𝑘𝑡−1 + (𝑋𝑘𝑡 − 𝑋∗) 𝑓𝑘
2.3.7.1.3. Generate Random Number, R
2.3.7.1.4. If R > 𝑝𝑟𝑘

2.3.7.1.4.1. Construct a solution around GB
2.3.7.1.5. End if
2.3.7.1.6. Convert 𝑏𝑎𝑡𝑘 to binary

2.3.7.2. End k
2.3.7.3. For a = 1 to N

2.3.7.3.1.1. Generate Random Number, R
2.3.7.3.1.2. Evaluate G(𝑥𝑎) for new solution
2.3.7.3.1.3. Replace previous 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎 with new 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎, if new solution it is

better, and if if R < 𝑙𝑎
2.3.7.4. End a
2.3.7.5. If GB > FT

2.3.7.5.1. End While
2.3.7.6. End if

2.3.8. End While
2.3.9. Get NS from GB
2.3.10. If NS < Min

2.3.10.1. Add (Min - NS) instances to GB
2.3.11. End if
2.3.12. Output GB

2.4. End CISA
2.5. Train SVM model on instances selected by GB
2.6. Test model on current test data (i.e. 1/10 of dataset)
2.7. Sum CA

3. End for
4. Calculate ACA, over number of folds
5. Output ACA; ACA = CA / NF
6. End CISA_SVM

Fig. 4. Pseudocode for BISA

3.1 Fitness Function

As aforementioned, the primary difference between the proposed filter-based and wrapper-
based techniques is in their objectives. This section presents the fitness function for the
proposed filter-based and wrapper-based techniques.

1360 Akinyelu et al.: On the Performance of Cuckoo Search and Bat Algorithms Based Instance Selection
 Techniques for SVM Speed Optimization with Application to e-Fraud Detection

3.1.1 Fitness Function for the Proposed Filter-based Techniques

Fitness function for the proposed filter-based BISA and CSISA is shown in equation (13).
The fitness function considers both percentage reduction and boundary instances. More
weight is assigned to agents with high percentage reduction and high number of boundary
instances. The fitness function evaluation begins by calculating the total number of instances
in each agent (𝛼). Furthermore, the algorithm calculates the number of instances selected by
each agent (𝛽) and the number of boundary instances selected by each agent (𝛾). The number
of instances selected by an agent is obtained by adding all the non-zero elements in the
instance mask of the agent. Also, the number of boundary instances selected by an agent is
obtained, by firstly passing its selected instances to a boundary detection algorithm for
boundary instance selection. Furthermore, the algorithm selects boundary instances, and the
number of selected boundary instances is calculated and used for fitness value evaluation. In
this study, clustering-based boundary detection algorithm, proposed by Chen et al. [27], is
used for boundary instance selection. Finally, 𝛼, 𝛽 and 𝛾 are used to calculate the fitness
value, as shown in equation (13).

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = ��100 ∗ 𝛼−𝛽
𝛼

 � + �𝛾
𝛽
∗ 100��

2
�

 (13)

where 𝛼 = total number of instances in an instance mask, 𝛽 = number of selected instances in
an instance mask and 𝛾 = number of selected boundary instances.

3.1.2 Fitness Function for the Proposed Wrapper-based Techniques

Fitness function utilized by the wrapper-based instance selection techniques is shown in
equation (14). The primary objective of the proposed wrapper-based techniques is to
improve the classification accuracy of SVM. Hence, the fitness function is calculated by
computing the classification accuracy of the candidate solution constructed by each agent.
That is, for each candidate solution, a classification model is constructed by training the
constructed solution (i.e. the reduced subset) on a classifier. Afterwards, the constructed
model is evaluated by testing it on a new dataset (test dataset), and the resultant classification
accuracy is used as the fitness value for the candidate. The candidate with the best fitness
value is the candidate with the highest classification accuracy. The best candidate will be
selected and used to build the final classifier.

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = 𝛼𝑖 (14)

where αi is the classification accuracy for each candidate in the solution space.

3.2 Extracted Features

Prior to classification, some set of spam features are extracted from each email in the spam
email datasets used for evaluation. After extraction, the features are formatted according to
the input format required by libSVM [46], and saved in a text file for easy processing.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 3, March 2018 1361

LibSVM is the SVM library used in this research for all experiments. Details on the
extracted spam features are described in this section. The features used for phishing email
classification is similar to the features used in one of our previous studies [4].

3.2.1 Word-Based Features

For this feature, different words are extracted from all emails in the dataset, using the
extraction technique proposed by Paul Graham [47]. Moreover, spam score for each word is
calculated, and words with high spam score are selected and used as a feature. In this study,
a total of 𝑁 word-based features are extracted, where 𝑁 is the number of words with spam
score greater than, or equal to 0.9999.

3.2.2 Term Frequency + Inverse Sentence Frequency

This feature is a combination of term frequency (TF) and inverse sentence frequency (ISF).
For each email, TF for each word is calculated using equation (15), and ISF for each
sentence in an email is calculated using equation (16). Finally, as shown in equation (17),
sum of the product of TF and ISF is calculated and used as a feature. In this study, we
converted this feature to binary by assigning 0 to emails with TF-ISF value less than 100,
and 1 to emails with TF-ISF values greater than 100. This feature was also used by Shams
and Mercer [48].

𝑇𝐹𝑡 = �1 + log(𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦), 𝑖𝑓 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑡 > 0
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� (15)

𝐼𝑆𝐹𝑡 = log 𝑁
𝑆𝐹𝑡

 , (16)

 𝑤ℎ𝑒𝑟𝑒 𝑁 𝑖𝑠 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ,𝑎𝑛𝑑 𝑆𝐹𝑡 𝑖𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 𝑤𝑖𝑡ℎ 𝑡𝑒𝑟𝑚 𝑡

∑ 𝑇𝐹𝑡𝑡 × 𝐼𝑆𝐹𝑡 (17)

3.2.3 Complex Words

Words with more than two syllables are called complex words. In this study, emails
containing less than fifteen complex words are assigned the value of 0, and emails containing
more than fifteen complex words are assigned the value of 1. This feature was proposed by
Shams and Mercer [48].

3.2.4 Simple Words

Simple words refers to words with one or two syllables. A Boolean value of 0 is recorded if
an email contain less than fifty simple words, and 1 is recorded if an email contain more than
fifty simple words. This feature is similar to the feature used by Shams and Mercer [48].

3.2.5 Spam Words

Some list of spam words, provided by Sham and Mercer [48], are extracted and used as
features. A Boolean value of 1 is recorded if an email contain more than one spam word, and
0 is recorded otherwise.

1362 Akinyelu et al.: On the Performance of Cuckoo Search and Bat Algorithms Based Instance Selection
 Techniques for SVM Speed Optimization with Application to e-Fraud Detection

3.2.6 Total HTML Tags

HTML tags are keywords that defines how web browsers formats and displays contents [49],
such as text and images. HTML tags are extracted from each email and a Boolean value of 1
is recorded if an email contain more than one HTML tag and 0 is recorded otherwise. This
feature was also used by authors in [48].

3.2.7 Document Length

Document length refers to the number of sentences in an email document. A Boolean value
of 1 is recorded if an email contain more than one sentence, and 0 is recorded otherwise.
This feature was proposed by Shams and Mercer [48].

3.2.8 Non Anchor Tags

HTML anchor tags (<a><a/>), are tags used to navigate to other web pages. All tags that are
not anchor tags (such as <p> and <h1>), are extracted from each email and a Boolean value
is recorded. Emails containing more than one non-anchor tag is assigned the value of 1, and
emails containing one or no non-anchor tag is assigned the value of 0. This feature was also
used by Shams and Mercer [48].

3.2.9 Stop Words

Stops words are words frequently used in a specific language. Some list of stop words,
provided by Shams and Mercer [48], are extracted from each email and a Boolean value is
recorded. Emails with stop words greater than hundred, are assigned the value of one, and
emails containing less than hundred stop words are assigned the value of zero. This feature
was proposed by Shams and Mercer [48].

3.2.10 Presence of ‘Link’, ‘Click Here’ in URL Text of a Link

Most spam or phishing email typically requires users to click on a link, which re-directs
them to a spam or phishing websites. Hence, for each email, URLs are extracted, and a
Boolean value of 1 is recorded based on whether the URL text contains the following words:
“Click Here” or “Link”. Otherwise, 0 is recorded. Similar feature was used by authors in [4].

3.2.11 Domain Name Disparity
Domain names are used to detect different web pages. For example, the domain name of
“https://www.google.com/” is “google.com”. Domain names in the body of legitimate emails,
should be similar to the sender’s domain name. If there is a disparity, the email is likely a
spam email. Domain names from the body section of each email are extracted and compared
to the domain name used to send the email. If there is a disparity, the email is assigned the
value of one, otherwise, the email is assigned the value of zero. This feature was also used in
[4] and [50].

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 3, March 2018 1363

START

Dataset

Set I = I + 1

Set J = J + 1

Is I == J

Process (n-1)-fold training Dataset

Is J < I

No

Training Dataset

Start NI Algorithm

Generate Training Subset using NI Algorithm

End NI Algorithm

Train Classifier with Generated Subset

No

Yes

Keep Jth fold
Subset for test

Yes

Trained SVM Model

Test Dataset

Sum = Sum + CA

Is J < NF

Output Avg, i.e. Average
Accuracy

END

Yes

Avg += Sum / NF

No

Fig. 5. Flowchart for proposed NI Algorithm

3.2.12 Sum of Distinct Domain

As aforementioned, domain names are used to detect web pages. Domain names are
extracted from each email and the total number of domain names is recorded and used a
continuous feature. Domain names that appears more than once are counted only once. This
feature was also used by authors in [51] and [4].

1364 Akinyelu et al.: On the Performance of Cuckoo Search and Bat Algorithms Based Instance Selection
 Techniques for SVM Speed Optimization with Application to e-Fraud Detection

3.2.13 SpamAssassin Feature
SpamAssassin is a reliable spam email filter, currently used by some organizations. In this
study, SpamAssassin is used to classify each email and a Boolean value of 1 or 0 is assigned
to an email based on the output of SpamAssassin. An untrained offline version of
SpamAssassin is used with the default threshold value and rule weights. Similar feature was
used by Akinyelu et al. [4] and Fette et al. [51].

3.2.14 HTML Content Type

Emails are of different formats and content types. These standards and formats are defined
by MIME standards. Email content type could be “ordinary text”, or “HTML”. Ordinary text
content type is defined by “text/plain”, and “HTML” content type is defined by “text/html”.
Fette et al. [51], noted that emails with “HTML” content type, are likely scam emails. Hence,
in this study, emails with “text/html” are assigned the value of one, otherwise, emails are
assigned the value of zero. Similar feature was also used in [4] and [51].

3.2.14 Total Email Links

Zhang and Y. Yuan [52] pointed out that emails containing many URLs are likely spam or
phishing emails. Hence, email links are extracted from each email and the total number of
links are recorded and used as a continuous feature. This feature was also used by authors in
[4] and [52].

3.3 Experimental Setup

The proposed techniques are validated on datasets containing three popular e-fraud types:
credit card fraud, phishing email and spam email. The first dataset (Dataset 1) contain 3500
ham email provided by SpamAssassin [53] and 500 phishing emails provided by Jose
Nazario [54]. Currently, the phishing emails are no longer available online. Interested users
are advised to contact the dataset provider, Jose Nazario [54]. The second dataset (Dataset 2)
contain 3500 ham emails and 500 spam emails provided by SpamAssassin [53]. The third
dataset (Dataset 3) contains 2787 ham emails and 1813 spam emails, provided by UCI data
repository [55]. The fourth dataset (Dataset 4) contains 492 credit card fraud transactions and
4508 legitimate card transactions, provided by Andrea [56]. Table 3 shows a summary of the
four datasets. In addition, robustness of the techniques are further demonstrated by validating
them on 20 datasets, provided by the popular UCI dataset repository [55].

The performance of CSISA and CISA is compared to standard SVM and eight existing
instance selection techniques in terms of predictive accuracy, classification speed and
storage reduction. The compared techniques include: CLUS_IS [27], KNN_IS [6], PSC [57],
DROP 3 [26], DROP 5 [26], GCNN [58], POC-NN [59] and ADR-Miner [17]. All
experiments are performed using the popular 10 times, 10 fold cross validation technique.
Furthermore, sixteen features are extracted from Dataset 1 and fifteen features are extracted
from Dataset 2. The features extracted from Dataset 1 is similar to the features described in
one of our previous studies [4]. Also, the features extracted from Dataset 2 are described in
Section 3.2. After feature extraction, information gain (IG) for all the extracted features was

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 3, March 2018 1365

generated and features with high IG are used for training. For Dataset 1, the best 9 features
are used for training, and for Dataset 2, the best 10 features are used for training. Dataset 3,
Dataset 4 and the UCI datasets, were already processed by their providers, hence feature
extraction was not necessary. All the datasets are formatted according to the input format
required by libSVM [46] - the SVM Library used in this study. Moreover, all the features are
scaled down using Gaussian Transformation.

Given 𝑁 training instances, utilizing all the training set for training is time consuming.
Instead of utilizing the entire training set, training a classifier on a reduced subset, void of
superfluous or harmful instances, will not significantly affect the classification accuracy of
the classifier, rather, it can lead to similar or improved classification accuracy [22]. On this
basis, the proposed filter-based techniques are designed to use only a subset of the entire
training set for instance selection. That is, for all experiments, 𝑛 instances are passed to
BISA and CSISA for processing, where 𝑛 < 𝑁. This implies that BISA and CSISA searches
an instance space consisting of 𝑛 instances, instead of an instance space consisting of 𝑁
instances (i.e. the entire training dataset). Furthermore, for all the experiments, different set
of parameters are evaluated, with the aim of determining the best parameters suitable for the
proposed techniques and also demonstrating the robustness of the proposed techniques.
Results for the best parameters are reported in section 3.4. Unlike the filter-based techniques,
the wrapper-based techniques are designed to use the entire training set. That is, they are
designed to search through the entire training data for relevant instances.

For all experiments, RBF kernel is used. RBF kernel requires the tuning of two parameters:
𝐶 𝑎𝑛𝑑 𝛾. As suggested by Hsu et al. [60], this study used exponential growing sequence of
𝐶 𝑎𝑛𝑑 𝛾 . Furthermore, all experiments were performed on a desktop computer with the
following specification: Windows 7, 64 bits, 8GB RAM, Intel core (TM) i7-4770S CPU @
3.10GHz. Tables 1 and 2 shows the parameters used for all experiments. The parameters are
similar to the parameters used by authors in [61] and [62].

The following key are used for the Tables: NA-Number of agents, NI-number of instances,
GB-global best, APA-Average Prediction Accuracy, FP-False Positive, FN-False Negative,
R-Recall, Pr-Precision, FM-F-Measure, T-Time, 𝑁𝑔 = Number of generations

Table 1. Parameter used for CISA

Discovery
Rate

Tolerance 𝑵𝒈(Filter) 𝑵𝒈(Wrapper) Beta

0.25 1.0𝑒−5 5 3 1.5

Table 2. Parameter used for BISA

Loudness Pulse
Rate

𝑁𝑔(Filter) 𝑁𝑔(Wrapper) Minimum
Frequency

Maximum
Frequency

0.5 0.5 5 3 0 2

1366 Akinyelu et al.: On the Performance of Cuckoo Search and Bat Algorithms Based Instance Selection
 Techniques for SVM Speed Optimization with Application to e-Fraud Detection

Table 3. Datasets used for Experiments

Dataset Name Size Ham Spam/Phishing

Dataset 1 4000 3500 Spam: 500 (12.5%)

Dataset 2 4000 3500 Phishing: 500 (12.5%)

Dataset 3 4600 2787 Spam: 1813 (39.4%)

Dataset 4 5000 4508 Credit Card: 492 (9.84%)

3.4 Results and Discussion

Tables 4 - 6 shows the result for KNN_IS and CLUS_IS, for phishing email, credit card
fraud and spam email. As shown in both tables, CLUS_IS yielded good classification
accuracy, however, its classification speed is poor. KNN_IS yielded better classification
speed and accuracy, compared to CLUS_IS. Overall, CLUS_IS produced good classification
accuracy, but at the expense of speed. KNN_IS produced better classification accuracy and
speed compared to CLUS_IS.

Tables 4 – 6 shows the credit card fraud, spam and phishing email result for the proposed
filter-based CSISA and BISA. Also, Tables 9 – 11 shows the credit card fraud, spam and
phishing email result for the proposed wrapper-based CSISA and BISA. As shown in Tables
4 - 6, the filter-based techniques correctly classified over 96% credit card transactions, in
less than 85 seconds. Moreover, they correctly classified over 99% phishing emails within 50
seconds. Additionally, they correctly classified over 95% spam emails in less than 62
seconds. Also, as shown in the Tables, all the techniques requires a maximum of 10% of the
training set to produce the above-mentioned results. Moreover, the filter-based techniques
require a maximum of 700 instances to produce robust classification models. As shown in
Tables 9 - 11, the wrapper-based techniques outperform the filter-based techniques, in terms
of classification accuracy. However, the filter-based techniques performed better, in terms of
classification speed and storage reduction. Overall, all the techniques produced good results,
demonstrating their credibility for instance selection.

Tables 4-6 shows the credit card fraud, spam and phishing email results for CLUS_IS,
KNN_IS, standard SVM, BISA and CSISA. As shown in the Tables, the filter-based
techniques improved SVM training speed by over 93%, without significantly affecting SVM
classification quality. Moreover, they outperform CLUS_IS and KNN_IS, in terms of
classification speed and storage reduction. Additionally, Tables 9-11 shows the credit card
fraud, spam and phishing email results produced by standard SVM and the wrapper-based
techniques. As shown in the Tables, the wrapper-based techniques improved SVM training
speed by over 46%, and simultaneously improved SVM classification accuracy. The
wrapper-based techniques also reduced the training dataset by an average of 50%. Table 7
shows the result for CLUS_IS [27], KNN_IS [6], PSC [57], DROP 3 [26], DROP 5 [26],
GCNN [58] , POC-NN [59] and the filter-based BISA and CSISA. As shown in the Table,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 3, March 2018 1367

the proposed techniques outperform the seven compared techniques, in both classification
accuracy and speed.

Tables 8 and 13 reports the classification accuracy, speed and storage reduction percentage
produced by standard SVM and the proposed techniques, for 20 UCI datasets. As shown in
Table 8, for each dataset, the best classification speed is underlined. As reported, the filter-
based techniques significantly improved SVM classification speed and storage reduction for
all the 20 datasets, without meaningfully affecting SVM classification accuracy. Also, as
shown in Table 13, for each dataset, the best classification accuracy is underlined. As
reported in the table, the wrapper-based techniques consistently produced better predictive
accuracy in 75% (15 out of 20) of the datasets, compared to standard SVM. They also
produced better classification speed and reduced the training dataset size by an average of
50%. Table 13 shows the result for ADR-Miner [17] (an existing wrapper-based technique).
As shown in the Table, CSISA and BISA outperform ADR-Miner in 90% (9 out of 10)
datasets used for evaluation. Table 12 shows the phishing email result for the proposed
techniques and four existing ML-based phishing email detection techniques. As shown in the
Table, the wrapper-based techniques outperform three of the four techniques.

Finally, two sample, Z-Test statistical analysis was performed to evaluate the credibility of
all the results. The analysis was performed with the primary objective of showing (with 95%
confidence level) that the proposed filter and wrapper based techniques are significantly
faster than standard SVM. As shown in Tables 14 and 15, the filter-based and wrapper-
based techniques significantly improve SVM classification speed.

4. Conclusion
SVM is a popular ML algorithm that has been widely applied to classification and regression
problems. However, SVM classification speed decreases with increase in dataset size. This
paper propose two filter-based and wrapper-based instance selection techniques for
improving SVM classification speed and accuracy. The primary difference between the filter
and wrapper based techniques is in their objectives. The filter-based techniques are designed
with the objective of improving SVM classification speed, and the wrapper-based techniques
are designed with the primary objective of improving SVM classification accuracy and speed.
The filter-based techniques are very useful for applications (such as video surveillance and
intrusion detection) that requires very fast online training of large datasets. Also, the
wrapper-based techniques are useful for applications (such as spam email and phishing email
classifiers) that are very sensitive to slight drop in classification accuracy.

The proposed techniques are validated on 24 datasets. Initially, they are evaluated on
datasets containing three popular e-fraud types: credit card fraud, phishing email and spam
email. Furthermore, they are evaluated on datasets containing 21 other problems obtained
from UCI dataset repository. Experimental results show that the filter-based techniques
excellently improved SVM training speed in 100% of the datasets, without significantly
affecting SVM classification quality. Also, results shows that the wrapper-based techniques
improved SVM predictive accuracy in 74% of the datasets (17 out of 23), and
simultaneously improved SVM training speed. Additionally, experimental result show that

1368 Akinyelu et al.: On the Performance of Cuckoo Search and Bat Algorithms Based Instance Selection
 Techniques for SVM Speed Optimization with Application to e-Fraud Detection

the proposed techniques produced excellent storage reduction and speed-accuracy tradeoff.
Finally, two-samples Z-test statistical analysis was performed to evaluate the speed of the
proposed techniques, and experimental results reveal that the filter and wrapper based
techniques significantly improve SVM classification speed. Overall, as shown in all the
results, the proposed filter and wrapper based techniques are very fast, accurate and reliable
SVM-based e-fraud detection and instance selection techniques.

Supervised learning algorithms (such as SVM) and other ML algorithms may not produce
optimal or accurate results when applied to anonymized datasets. Riyazuddin and Balaram
[63] proposed a novel pattern anonymization technique by using feature set partitioning in
combination with data restructuring. The proposed technique was predominantly designed to
improve the performance of supervised learning algorithms, when applied to anonymized
datasets. Data anonymization is an interesting domain, and an avenue for further research.

Table 4. Filter-based Techniques vs existing filter-based techniques for Credit Card Fraud

Technique APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage Reduction
CSISA 96.94 99.20 1.87 14.04 85.96 85.54 84.97 34.72 3.18
BISA 97.40 99.20 1.56 12.14 87.86 87.43 87.07 84.88 7.15

CLUS [27] 98.47 99.4 0.46 11.31 88.69 95.48 91.9 684.06 41.67
KNN [6] 92.5 97.4 7.84 4.41 95.59 58.83 72.76 259.22 11.11

Standard SVM 98.83 99.4 0.29 9.23 90.77 97.07 93.79 2072.99 0

Table 5. Filter-based BISA and CSISA vs existing filter-based techniques for Phishing Email

Technique APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage (%)
CSISA 99.31 100 0.45 2.34 97.66 97.06 97.22 30.54 5.90
BISA 99.43 100 0.33 2.28 97.72 97.79 97.62 45.62 8.92

CLUS [27] 99.53 100 0.23 2.16 97.84 98.47 98.03 337.46 41.67
KNN [6] 99.59 100 0.25 1.56 98.44 98.34 98.3 244.15 5.56

Standard SVM 99.66 100 0.08 2.2 97.8 99.47 98.52 943.24 0

Table 6. Filter-based BISA and CSISA vs existing filter-based techniques for Spam Email

Technique APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage (%)
CSISA 96.31 97.50 3.59 4.40 95.60 79.58 86.60 39.63 5.73
BISA 96.36 97.50 3.57 4.14 95.86 79.52 86.84 46.03 6.27

CLUS [27] 96.44 100 2.61 10.28 89.72 84.41 85.35 311.98 41.67
KNN [6] 95.57 97.5 4.52 3.8 96.2 75.77 84.58 170.38 11.11

Standard SVM 96.66 97.5 3.13 4.8 95.2 81.28 87.62 953.94 0

Table 7. Filter based BISA and CSISA vs Other Techniques for Spambase

Technique APA(%) T(s)
BISA 86.71 96.87
CISA 88.15 91.22
KNN_IS [6] 85.59 758.94

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 3, March 2018 1369

CLUS_IS [27] 92.70 7375.75
PSC [57] 71.95 189.57
DROP 3 [26] 78.44 3782.57
DROP 5 [26] 78.72 2226.42
GCNN [58] 73.54 348.56
POC-NN [59] 75.37 735.08

Table 8. Filter-based BISA and CSISA vs Standard SVM for UCI Datasets
Dataset Name CSISA BISA SVM

Accuracy Storage Time Accuracy Storage Time Accuracy Storage Time
Abalone 52.96 5.58 42.28 53.21 8.68 65.77 55.71 0 2010
Balance Scale 88.71 29.41 29.82 90.52 46.11 49.64 93.71 0 101.1
Breast Tissue 58.10 44.17 7.24 57.70 45.01 7.20 64.6 0 15.98
Bupa 62.21 27.59 14.89 66.56 45.10 25.52 71.56 0 64.81
credit-g 62.21 23.14 14.89 66.56 36.28 25.52 75.95 0 299.9
Cleaveland 59.59 27.06 12.02 60.90 44.39 19.56 63.21 0 53.55
Ecoli 84.06 28.60 16.41 85.82 45.15 24.61 87.36 0 62.1
Glass 61.05 26.76 9.42 63.52 44.48 14.82 65.67 0 33.95
Hungarian 63.34 27.26 14.69 64.03 45.08 24.20 63.86 0 52.12
Iris 94.47 29.65 6.14 94.73 42.84 9.53 95.5 0 21.45
Liver 62.56 27.68 15.96 65.24 45.40 27.58 72.47 0 58.26
Pima Indians 74.25 29.69 42.91 75.03 46.47 70.93 76.92 0 126.7
Post Operative 71.63 55.94 6.90 71.25 55.92 7.04 71.25 0 11.87
Transfusion 77.74 29.84 32.06 78.09 46.62 53.35 78.61 0 135.2
Vertebral-3c 82.29 27.55 14.82 84.16 44.92 21.5 85.61 0 53.51
Voting 94.09 28.58 18.73 94.93 45.47 30.86 95.77 0 83.07
Waveform 82.81 4.66 51.03 83.89 7.28 79.05 86.98 0 2501
Wine 96.29 26.64 5.29 97.59 43.93 8.75 97.47 0 32.58
Yeast 55.48 18.19 50.06 57.39 28.22 80.07 59.45 0 306
Zoo 90.40 44.66 7.32 91.40 45.54 7.66 95 0 17.74
Average 73.71 28.13 20.64 75.13 40.64 32.66 77.83 0 302.04

Table 9. Wrapper-based BISA and CSISA vs standard SVM for Credit Card Fraud

Technique APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage (%)
CSISA 98.83 99.60 0.26 9.57 90.43 97.54 93.75 649.95 44.1
BISA 98.84 99.60 0.29 9.07 90.93 97.26 93.92 828.73 50.01

Standard SVM 98.83 99.4 0.29 9.23 90.77 97.07 93.79 2072.99 0

Table 10. Wrapper-based BISA and CSISA vs standard SVM for Phishing Email

Technique APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage (%)
CSISA 99.62 100 0.13 2.18 97.82 99.14 98.35 378.12 47.83
BISA 99.62 100 0.13 2.14 97.86 99.1 98.37 409.69 50.1

Standard SVM 99.66 100 0.08 2.2 97.8 99.47 98.52 943.24 0

1370 Akinyelu et al.: On the Performance of Cuckoo Search and Bat Algorithms Based Instance Selection
 Techniques for SVM Speed Optimization with Application to e-Fraud Detection

Table 11. Wrapper-based BISA and CSISA vs standard SVM for Spam Email

Technique APA(%) GB(%) FP(%) FN(%) R(%) Pr(%) FM(%) T(s) Storage (%)
CSISA 96.92 99.25 2.89 4.4 95.6 82.73 88.56 454.91 46.21
BISA 96.80 97.75 3.11 3.86 96.14 81.56 88.21 442.32 50.03

Standard SVM 96.66 97.5 3.15 4.66 95.34 81.25 87.67 853.15 0

Table 12. Wrapper-based BISA and CSISA vs Existing Techniques

Technique APA(%) FP(%) FN(%) R(%) Pr(%) FM(%)
CSISA 99.62 0.13 2.18 97.82 99.14 98.35
BISA 99.62 0.13 2.14 97.86 99.1 98.37

Akinyelu and Adewumi [4] 99.70 0.06 2.50 97.50 99.47 98.45
Andre et al [3] 99.13 0.20 6.39 93.61 98.26 95.88
Fette et al. [51] 99.49 0.13 3.62 96.38 98.92 97.64

Zhang and Yuan [52] 95.51 - - 96.18 95.25 95.71

Table 13. Wrapper-based BISA and CSISA vs Standard SVM and ADR-Miner for UCI Datasets

Dataset
Name

CSISA BISA ADR-Miner Standard SVM
Accu Stor Time Accu Stor Time Acc

u
Stor Time Accu Stor Time

Abalone 56.7 37.9 746.0 56.4 50.0 1014.0 - - - 55.7 0 2010
Balance Scale 91.5 42.3 74.0 91.5 50.5 81.9 - - - 93.7 0 101.1
Breast Tissue 69.5 47.4 14.2 67.6 50.7 13.8 60.6 24.0 - 64.6 0 15.98

Bupa 69.9 40.0 39.3 69.8 49.9 44.5 - - - 71.6 0 64.81
credit-g 75.9 39.7 150.2 75.8 49.8 179.6 74.1 19.3 76.0 0 299.9

Cleaveland 64.9 38.6 33.5 64.1 49.8 40.0 - - - 63.2 0 53.55
Ecoli 89.3 44.5 41.6 88.1 50.3 46.3 81.3 21.3 - 87.5 0 62.1
Glass 71.1 39.6 24.9 69.7 50.4 29.3 69.6 31.4 - 65.7 0 33.95

Hungarian 67.8 37.2 33.5 66.3 49.8 41.8 - - - 63.9 0 52.12
Iris 97.7 46.7 17.0 96.6 49.7 17.8 92.6 42.1 - 95.5 0 21.45

Liver 71.5 39.3 41.7 70.2 50.6 44.6 58.6 17.6 - 72.5 0 58.26
Pima Indians 78.4 38.7 102.4 77.2 49.7 111.6 - - - 76.9 0 126.7

Post
Operative

71.5 56.4 12.1 72.1 56.7 11.6 - - - 71.3 0 11.87

Transfusion 79.2 38.2 84.8 79.5 50.3 95.9 72.3 21.9 - 78.6 0 135.2
vertebral-3c 87.7 42.3 35.0 86.8 49.9 37.8 83.6 23.3 - 85.6 0 53.31

Voting 96.5 43.9 49.2 96.5 50.2 58.0 95.5 12.0 - 95.8 0 83.07
Waveform 86.8 39.8 1300 86.8 50.0 1597 - - - 87.0 0 2501

Wine 97.8 49.1 17.7 97.9 50.2 17.4 - - - 97.5 0 32.58
Yeast 60.9 40.7 185.5 60.9 50.0 209.5 - - - 59.5 0 306
Zoo 97.0 50.3 12.3 96.6 50.4 13.0 98.8 52.8 - 95.0 0 17.74

Average 79.6 42.5 144.3 78.8 50.0 177.1 - - - 78.5 0 288.9
9

Key: Accu: Accuracy, Stor: Storage

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 3, March 2018 1371

Table 14. Statistical Analysis: Filter-based BISA and CSISA

Technique e-Fraud Type Number of
Samples

α = 0.05
Critical Value =

1.959963985
CSISA vs CLUS [27] Credit Card Fraud 100 155.2301779
CSISA vs KNN [6] Credit Card Fraud 100 134.1201855
CSISA vs Standard

SVM
Credit Card Fraud 100 126.473953

BISA vs CLUS [27] Credit Card Fraud 100 140.1926725
BISA vs KNN [6] Credit Card Fraud 100 92.2637861

BISA vs Standard SVM Credit Card Fraud 100 123.1792182
CSISA vs CLUS [27] Phishing Email 100 33.2293053
CSISA vs KNN [6] Phishing Email 100 94.24803824
CSISA vs Standard

SVM
Phishing Email 100 284.6893032

BISA vs CLUS [27] Phishing Email 100 31.24861442
BISA vs KNN [6] Phishing Email 100 74.76322296

BISA vs Standard SVM Phishing Email 100 257.0614655
CSISA vs CLUS [27] Spam Email 100 104.5245697
CSISA vs KNN [6] Spam Email 100 48.92006215
CSISA vs Standard

SVM
Spam Email 100 298.3137267

BISA vs CLUS [27] Spam Email 100 101.3975132
BISA vs KNN [6] Spam Email 100 160.4279588

BISA vs Standard SVM Spam Email 100 294.8151401

Table 15. Statistical Analysis: Wrapper-based BISA and CSISA

Technique e-Fraud Type Number
of

Samples

α = 0.05
Critical Value =

1.959963985
CSISA vs Standard SVM Credit Card Fraud 100 72.31003626
BISA vs Standard SVM Credit Card Fraud 100 70.89500213

CSISA vs Standard SVM Phishing Email 100 85.1808948
BISA vs Standard SVM Phishing Email 100 90.91963131

CSISA vs Standard SVM Spam Email 100 75.31108681
BISA vs Standard SVM Spam Email 100 87.91818266

Reference

[1] C. Cortes and V. Vapnik, "Support-Vector Networks," Machine learning, vol. 20, no. 3, pp. 273-

297, September, 1995. Article (CrossRef Link).
[2] B. Yashvantrai Vyas, R. P. Maheshwari, and B. Das, "Pattern Recognition Application of

Support Vector Machine for Fault Classification of Thyristor Controlled Series Compensated
Transmission Lines," Journal of The Institution of Engineers (India): Series B, vol. 97, no. 2, pp.
175-183, June, 2016. Article (CrossRef Link).

https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/s40031-015-0210-8

1372 Akinyelu et al.: On the Performance of Cuckoo Search and Bat Algorithms Based Instance Selection
 Techniques for SVM Speed Optimization with Application to e-Fraud Detection

[3] A. Bergholz, J. H. Chang, G. Paaß, F. Reichartz, and S. Strobel, "Improved Phishing Detection
using Model-Based Features," in Proc. of the Conference on Email and Anti-Spam (CEAS),
Mountain View, CA, pp. 1-27, August 21-22, 2008. Article (CrossRef Link).

[4] A. A. Akinyelu and A. O. Adewumi, "Classification of phishing email using random forest
machine learning technique," Journal of Applied Mathematics, vol. 2014, Article ID 425731, 6
pages, April, 2014. Article (CrossRef Link).

[5] E. Kremic and A. Subasi, "Performance of random forest and SVM in face recognition," Int.
Arab J. Inf. Technol., vol. 13, no. 2, pp. 287-293, March, 2016. Article (CrossRef Link).

[6] N. Panda, E. Y. Chang, and G. Wu, "Concept boundary detection for speeding up SVMs," in
Proc. of the 23rd international conference on Machine learning, pp. 681-688, June 25 - 29, 2006.
Article (CrossRef Link).

[7] J. A. Olvera-López, J. A. Carrasco-Ochoa, J. F. Martínez-Trinidad, and J. Kittler, "A review of
instance selection methods," Artificial Intelligence Review, vol. 34, no. 2, pp. 133-143, August,
2010. Article (CrossRef Link).

[8] S. Fine and K. Scheinberg, "Efficient SVM training using low-rank kernel representations," The
Journal of Machine Learning Research, vol. 2, pp. 243-264, December, 2002.
Article (CrossRef Link).

[9] B. L. Narayan, C. A. Murthy, and S. K. Pal, "Maxdiff kd-trees for data condensation," Pattern
Recognition Letters, vol. 27, no. 3, pp. 187-200, February, 2006. Article (CrossRef Link).

[10] H. Liu and H. Motoda, "On Issues of Instance Selection," Data Mining and Knowledge
Discovery, vol. 6, no. 2, pp. 115-130, April, 2002. Article (CrossRef Link).

[11] J. C. Bezdek and L. I. Kuncheva, "Nearest prototype classifier designs: An experimental study,"
International Journal of Intelligent Systems, vol. 16, no. 12, pp. 1445-1473, December, 2001.
Article (CrossRef Link).

[12] V. Cerveron and F. J. Ferri, "Another move toward the minimum consistent subset: a tabu search
approach to the condensed nearest neighbor rule," IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), vol. 31, no. 3, pp. 408-413, June, 2001.
Article (CrossRef Link).

[13] J. A. Olvera-López, J. A. Carrasco-Ochoa, and J. F. Martínez-Trinidad, "Sequential search for
decremental edition," in Proc. of International Conference on Intelligent Data Engineering and
Automated Learning, pp. 280-285, July 6-8, 2005. Article (CrossRef Link).

[14] L. I. Kuncheva, "Fitness functions in editing k-NN reference set by genetic algorithms," Pattern
Recognition, vol. 30, no. 6, pp. 1041-1049, June, 1997. Article (CrossRef Link).

[15] J. R. Cano, F. Herrera, and M. Lozano, "Stratification for scaling up evolutionary prototype
selection," Pattern Recognition Letters, vol. 26, no. 7, pp. 953-963, May, 2005.
Article (CrossRef Link).

[16] S. García, J. R. Cano, and F. Herrera, "A memetic algorithm for evolutionary prototype selection:
A scaling up approach," Pattern Recognition, vol. 41, no. 8, pp. 2693-2709, August, 2008.
Article (CrossRef Link).

[17] I. M. Anwar, K. M. Salama, and A. M. Abdelbar, "Instance selection with ant colony
optimization," Procedia Computer Science, vol. 53, pp. 248-256, January, 2015.
Article (CrossRef Link).

[18] U. Garain, "Prototype reduction using an artificial immune model," Pattern Analysis and
Applications, vol. 11, no. 3, pp. 353-363, September, 2008. Article (CrossRef Link).

[19] M. Behdad, L. Barone, M. Bennamoun, and T. French, "Nature-inspired techniques in the
context of fraud detection," IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), vol. 42, no. 6, pp. 1273-1290, November, 2012.
Article (CrossRef Link).

https://doi.org/10.1.1.216.4317
http://dx.doi.org/10.1155/2014/425731
http://ccis2k.org/iajit/PDF/Vol.13,%20No.2/8468.pdf
https://doi.org/10.1145/1143844.1143930
https://doi.org/10.1007/s10462-010-9165-y
http://dl.acm.org/citation.cfm?id=944812
http://dx.doi.org/10.1016/j.patrec.2005.08.015
http://dx.doi.org/10.1023/a:1014056429969
https://doi.org/10.1002/int.1068
http://doi.org/10.1109/3477.931531
https://doi.org/10.1007/11508069_37
http://doi.org/10.1016/S0031-3203(96)00134-3
https://doi.org/10.1016/j.patrec.2004.09.043
http://dx.doi.org/10.1016/j.patcog.2008.02.006
https://doi.org/10.1016/j.procs.2015.07.301
http://dx.doi.org/10.1007/s10044-008-0106-1
https://doi.org/10.1109/TSMCC.2012.2215851

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 3, March 2018 1373

[20] KrebsOnSecurity. (2015), "FBI: $1.2B Lost to Business Email Scams". available at:
http://krebsonsecurity.com/2015/08/fbi-1-2b-lost-to-business-email-scams/ (accessed 14-
September - 2016).

[21] T. N. Report. (2016, 01-August-2017). Card Fraud Worldwide. 12. Available:
https://www.nilsonreport.com/upload/content_promo/The_Nilson_Report_10-17-2016.pdf

[22] H. Brighton and C. Mellish, "Advances in instance selection for instance-based learning
algorithms," Data mining and knowledge discovery, vol. 6, no. 2, pp. 153-172, April, 2002.
Article (CrossRef Link).

[23] T. Reinartz, "A Unifying View on Instance Selection," Data Mining and Knowledge Discovery,
vol. 6, no. 2, pp. 191-210, April, 2002. Article (CrossRef Link).

[24] J. Yang and S. Olafsson, "Optimization-based feature selection with adaptive instance sampling,"
Computers & Operations Research, vol. 33, no. 11, pp. 3088-3106, November, 2006.
Article (CrossRef Link).

[25] C.-F. Tsai, W. Eberle, and C.-Y. Chu, "Genetic algorithms in feature and instance selection,"
Knowledge-Based Systems, vol. 39, pp. 240-247, February, 2013. Article (CrossRef Link).

[26] D. R. Wilson and T. R. Martinez, "Reduction Techniques for Instance-Based Learning
Algorithms," Machine Learning, vol. 38, no. 3, pp. 257-286, March, 2000.
Article (CrossRef Link).

[27] J. Chen, C. Zhang, X. Xue, and C.-L. Liu, "Fast instance selection for speeding up support vector
machines," Knowledge-Based Systems, vol. 45, pp. 1-7, June, 2013. Article (CrossRef Link).

[28] H. Lei and V. Govindaraju, "Speeding up multi-class SVM evaluation by PCA and feature
election," in Proc. of the Workshop on Feature Selection for Data Mining:Interfacing Machine
Learning and Statistics Newport Beach, CA, April 22, 2005. Article (CrossRef Link).

[29] A. O. Adewumi and M. M. Ali, "A multi-level genetic algorithm for a multi-stage space
allocation problem," Mathematical and Computer Modelling, vol. 51, no. 1, pp. 109-126, January,
2010. Article (CrossRef Link).

[30] T. R. Jensen and B. Toft, "Graph coloring problems," vol. 39, 2011. Article (CrossRef Link).
[31] S. Chetty and A. O. Adewumi, "Three new stochastic local search metaheuristics for the annual

crop planning problem based on a new irrigation scheme," Journal of Applied Mathematics, vol.
2013, Article ID 158538, 14 pages, 2013., May, 2013. Article (CrossRef Link).

[32] O. A. Adewumi and A. A. Akinyelu, "A hybrid firefly and support vector machine classifier for
phishing email detection," Kybernetes, vol. 45, no. 6, pp. 977-994, June, 2016.
Article (CrossRef Link).

[33] X.-S. Yang and X. He, "Firefly algorithm: recent advances and applications," International
Journal of Swarm Intelligence, vol. 1, no. 1, pp. 36-50, January, 2013. Article (CrossRef Link).

[34] J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proc. of IEEE international
conference on neural networks, vol. 4, no. 2, pp. 1942-1948, November, 1995.
Article (CrossRef Link).

[35] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by simulated annealing," science,
vol. 220, no. 4598, pp. 671-680, May, 1983. Article (CrossRef Link).

[36] X.-S. Yang and S. Deb, "Cuckoo search via Lévy flights," in Proc. of World Congress on Nature
& Biologically Inspired Computing, 2009. NaBIC 2009. , pp. 210-214, December 9-11, 2009.
Article (CrossRef Link).

[37] X.-S. Yang, "A New Metaheuristic Bat-Inspired Algorithm," in Proc. of Nature Inspired
Cooperative Strategies for Optimization (NICSO 2010), J. R. González, D. A. Pelta, C. Cruz, G.
Terrazas, and N. Krasnogor, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 65-74,
2010. Article (CrossRef Link).

https://doi.org/10.1023/A:1014043630878
https://doi.org/10.1023/A:1014047731786
https://doi.org/10.1016/j.cor.2005.01.021
https://doi.org/10.1016/j.knosys.2012.11.005
https://doi.org/10.1023/a:1007626913721
https://doi.org/10.1016/j.knosys.2013.01.031
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.85.1935
https://doi.org/10.1016/j.mcm.2009.09.004
http://onlinelibrary.wiley.com/doi/10.1002/9781118032497.ch1/summary
https://doi.org/10.1155/2013/158538
https://doi.org/10.1108/K-07-2014-0129
https://doi.org/10.1504/IJSI.2013.055801
https://www.cs.tufts.edu/comp/150GA/homeworks/hw3/_reading6%201995%20particle%20swarming.pdf
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1109/NABIC.2009.5393690
https://doi.org/10.1007/978-3-642-12538-6_6

1374 Akinyelu et al.: On the Performance of Cuckoo Search and Bat Algorithms Based Instance Selection
 Techniques for SVM Speed Optimization with Application to e-Fraud Detection

[38] D. Rodrigues, L. A. M. Pereira, R. Y. M. Nakamura, K. A. P. Costa, X.-S. Yang, A. N. Souza, et
al., "A wrapper approach for feature selection based on Bat Algorithm and Optimum-Path
Forest," Expert Systems with Applications, vol. 41, no. 5, pp. 2250-2258, April, 2014.
Article (CrossRef Link).

[39] S. A. Medjahed, T. A. Saadi, A. Benyettou, and M. Ouali, "Binary cuckoo search algorithm for
band selection in hyperspectral image classification," IAENG International Journal of Computer
Science, vol. 42, no. 3, pp. 183-191, July, 2015. Article (CrossRef Link).

[40] A. M. Taha, A. Mustapha, and S.-D. Chen, "Naive bayes-guided bat algorithm for feature
selection," The Scientific World Journal, vol. 2013, Article ID 325973, 9 pages, 2013., December,
2013. Article (CrossRef Link).

[41] E. Emary, W. Yamany, and A. E. Hassanien, "New approach for feature selection based on rough
set and bat algorithm," in Proc. of 9th International Conference on Computer Engineering &
Systems (ICCES), pp. 346-353, December 22-23, 2014. Article (CrossRef Link).

[42] M. A. Laamari and N. Kamel, "A hybrid bat based feature selection approach for intrusion
detection," in Proc. of Bio-Inspired Computing-Theories and Applications, ed: Springer, pp. 230-
238, 2014. Article (CrossRef Link).

[43] R. R Rajalaxmi, "A Hybrid Binary Cuckoo Search and Genetic Algorithm for Feature Selection
in Type-2 Diabetes," Current Bioinformatics, vol. 11, no. 4, pp. 490-499, September, 2016.
Article (CrossRef Link).

[44] S. Mousavirad and H. Ebrahimpour-Komleh, "Wrapper feature selection using discrete cuckoo
optimization algorithm," International Journal of Mechatronics Electrical, and Computer
Engineering, vol. 4, no. 11, pp. 709-721, April, 2014. Article (CrossRef Link).

[45] K. Bache and M. Lichman. (2013), "UCI machine learning repository". available at:
http://archive.ics.uci.edu/ml (accessed 12-May-2017).

[46] C.-C. Chang and C.-J. Lin, "LIBSVM: a library for support vector machines," ACM Transactions
on Intelligent Systems and Technology (TIST), vol. 2, no. 3, p. 27, April, 2011.
Article (CrossRef Link).

[47] P. Graham., "A Plan for Spam," 2002. available at: http://www.paulgraham.com/spam.html
(accessed 04-August-2016).

[48] R. Shams and R. E. Mercer, "Classifying Spam Emails Using Text and Readability Features," in
Proc. of IEEE 13th International Conference on Data Mining, pp. 657-666, December 7-10,
2013. Article (CrossRef Link).

[49] R. Duncan. "A Simple Guide to HTML," available at:
http://www.simplehtmlguide.com/whatisht- ml.php (accessed 13-September-2016).

[50] A. Almomani, T.-C. Wan, A. Altaher, A. Manasrah, E. ALmomani, M. Anbar, et al., "Evolving
fuzzy neural network for phishing emails detection," Journal of Computer Science, vol. 8, no. 7,
p. 1099, July, 2012. Article (CrossRef Link).

[51] I. Fette, N. Sadeh, and A. Tomasic, "Learning to detect phishing emails," in Proc. of the 16th
international conference on World Wide Web, Banff, AB, Canada, pp. 649-656, May 8-12, 2007.
Article (CrossRef Link).

[52] N. Zhang and Y. Yuan, "Phishing Detection Using Neural Network," CS229 lecture notes.
Article (CrossRef Link).

[53] C. Group., "SpamAssassin Data," 2006. available at: http://www.csmining.org/index.php/spam-
assassin-datasets.html (accessed 05-August-2014).

[54] J. Nazario., "Phishing Corpus," 2006. available at: http://monkey.org/jose/wiki/doku.ph-
p?id=PhishingCorpus (accessed 27-April-2015).

[55] A. Asuncion and D. Newman., "UCI Machine Learning Repository," 2007. available at:
http://archive.ics.uci.edu/ml/datasets.html (accessed 15-August-2016).

[56] Andrea., "Credit Card Fraud Detection," 2016. available at: https://www.kaggle.com/dal-
pozz/creditcardfraud (accessed 12-December-2016).

https://doi.org/10.1016/j.eswa.2013.09.023
http://www.iaeng.org/IJCS/issues_v42/issue_3/IJCS_42_3_03.pdf
https://doi.org/10.1155/2013/325973
https://doi.org/10.1109/ICCES.2014.7030984
https://doi.org/10.1007/978-3-662-45049-9_38
https://doi.org/10.2174/1574893611666151228190309
http://www.aeuso.org/includes/files/articles/Vol4_Iss11_709-721_Wrapper_Feature_Selection_using_Dis.pdf
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1109/ICDM.2013.131
https://doi.org/10.3844/jcssp.2012.1099.1107
https://doi.org/10.1145/1242572.1242660
http://cs229.stanford.edu/proj2012/ZhangYuan-PhishingDetectionUsingNeuralNetwork.pdf

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 3, March 2018 1375

[57] J. A. Olvera-López, J. A. Carrasco-Ochoa, and J. F. Martínez-Trinidad, "A new fast prototype
selection method based on clustering," Pattern Analysis and Applications, vol. 13, no. 2, pp. 131-
141, May, 2010. Article (CrossRef Link).

[58] C. Chien-Hsing, K. Bo-Han, and C. Fu, "The Generalized Condensed Nearest Neighbor Rule as
A Data Reduction Method," in Proc. of 18th International Conference on Pattern Recognition
(ICPR'06), pp. 556-559, August 20-24, 2006. Article (CrossRef Link).

[59] T. Raicharoen and C. Lursinsap, "A divide-and-conquer approach to the pairwise opposite class-
nearest neighbor (POC-NN) algorithm," Pattern Recognition Letters, vol. 26, no. 10, pp. 1554-
1567, July, 2005. Article (CrossRef Link).

[60] C.-W. Hsu, C.-C. Chang, and C.-J. Lin, "A practical guide to support vector classification. Tech.
rep., Department of Computer Science, National Taiwan University.," no. 1-16, 2003.
Article (CrossRef Link).

[61] X.-S. Yang. (2010), "Cuckoo Search (CS) Algorithm," available at: https://www.mathworks.c-
om/matlabcentral/fileexchange/29809-cuckoo-search-cs-algorithm/content/cuckoo_search.m
(accessed 11-September-2016).

[62] X.-S. Yang. (2015), "Bat Algorithm". available at: https://www.mathworks.com/matlabcentral/
fileexchange/37582-bat-algorithm--demo-/content/bat_algorithm.m (accessed 11-September-
2016).

[63] M. Riyazuddin and V. V. S. S. S. Balaram, "Pattern Anonymization: Hybridizing Data
Restructure with Feature Set Partitioning for Privacy Preserving in Supervised Learning," in Proc.
of the First International Conference on Computational Intelligence and Informatics : ICCII
2016, S. C. Satapathy, V. K. Prasad, B. P. Rani, S. K. Udgata, and K. S. Raju, Eds., ed Singapore:
Springer Singapore, pp. 603-614, 2017. Article (CrossRef Link).

Akinyelu A. Ayobami received his B.Sc. (Hons.) degree in Computer Science,
from the Federal University of Technology, Akure, Nigeria. He also received his
MSc. Degree from the University of KwaZulu-Natal, Durban, South Africa, where
he is currently pursuing his PhD degree in Computer Science. His current research
interest include: artificial intelligence and machine learning, with a focus on
solutions to e-fraud detection, big data problems and optimization problems.

Aderemi O. Adewumi received the B.Sc. and M.Sc. degrees in computer science
from the University of Lagos, Nigeria, and the Ph.D. degree in computational and
applied mathematics from the University of Witwatersrand, South Africa, with
specialty in optimization, computational intelligence and machine learning. He is
currently with the University of KwaZulu-Natal, Durban, South Africa, where he
leads the Optimization and Modeling Research Group in the School of Mathematics,
Statistics and Computer Science. His current research interests include optimization
and artificial intelligence, with a particular interest in computational intelligence,
intelligent learning and (meta) heuristics solutions to real-world global optimization
problems.

https://doi.org/10.1007/s10044-008-0142-x
https://doi.org/10.1109/ICPR.2006.1119
http://doi.org/10.1016/j.patrec.2005.01.003
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.224.4115
https://doi.org/10.1007/978-981-10-2471-9_58

