DOI QR코드

DOI QR Code

Athermalization and Narcissus Analysis of Mid-IR Dual-FOV IR Optics

이중 시야 중적외선 광학계 비열화·나르시서스 분석

  • Received : 2018.04.16
  • Accepted : 2018.04.26
  • Published : 2018.06.25

Abstract

We have designed a mid-infrared optical system for an airborne electro-optical targeting system. The mid-IR optical system is a dual-field-of-view (FOV) optics for an airborne electro-optical targeting system. The optics consists of a beam-reducer, a zoom lens group, a relay lens group, a cold stop conjugation optics, and an IR detector. The IR detector is an f/5.3 cooled detector with a resolution of $1280{\times}1024$ square pixels, with a pixel size of $15{\times}15{\mu}m$. The optics provides two stepwise FOVs ($1.50^{\circ}{\times}1.20^{\circ}$ and $5.40^{\circ}{\times}4.23^{\circ}$) by the insertion of two lenses into the zoom lens group. The IR optical system was designed in such a way that the working f-number (f/5.3) of the cold stop internally provided by the IR detector is maintained over the entire FOV when changing the zoom. We performed two analyses to investigate thermal effects on the image quality: athermalization analysis and Narcissus analysis. Athermalization analysis investigated the image focus shift and residual high-order wavefront aberrations as the working temperature changes from $-55^{\circ}C$ to $50^{\circ}C$. We first identified the best compensator for the thermal focus drift, using the Zernike polynomial decomposition method. With the selected compensator, the optics was shown to maintain the on-axis MTF at the Nyquist frequency of the detector over 10%, throughout the temperature range. Narcissus analysis investigated the existence of the thermal ghost images of the cold detector formed by the optics itself, which is quantified by the Narcissus Induced Temperature Difference (NITD). The reported design was shown to have an NITD of less than $1.5^{\circ}C$.

항공용 전자 광학 타겟팅 시스템을 위한 중적외선 광학계를 설계하였다. 본 광학계는 이중 시야를 갖도록 설계되었으며, 빔 축소 전단 광학계, 줌 렌즈 그룹, 릴레이 렌즈 그룹, 콜드스탑 공액 광학계 및 냉각 적외선 검출기로 구성된다. 적외선 검출기는 단일 화소의 크기가 $15{\times}15{\mu}m$$1280{\times}1024$ 화소 배열을 가지며 잡음을 최소화하기 위하여, f/5.3의 냉각 콜드스탑이 적용된 제품으로 선정하였다. 이중 시야 ($1.50^{\circ}{\times}1.20^{\circ}$, $5.40^{\circ}{\times}4.23^{\circ}$)는 두 개의 렌즈를 삽입하는 방식으로 구현했으며, 줌 배율 변경 시 모든 시야에 걸쳐 f/5.3의 콜드스탑의 효율을 유지하도록 설계하였다. 열 효과가 이미지에 미치는 영향을 조사하기 위해 비열화 및 나르시서스 분석을 수행하였으며, 비열화 분석은 $-55{\sim}50^{\circ}C$의 작동 온도를 기준으로 초점 이동과 잔여 고차 파면 수차에 조사하였고 제르니케 다항식을 이용한 민감도 분석을 수행하여 최적의 보상자를 선정하였다. 선정된 보상자의 최적 이동을 고려한 MTF 해상력을 확인한 결과, 작동 온도 전 구간에 걸쳐 요구조건인 33 lp/mm에서 축상 10% 이상의 성능을 유지하는 것을 확인하였으며, 나르시서스 분석 결과, NITD (Narcissus Induced Temperature Difference) 값이 $1.5^{\circ}C$ 이하가 되도록 설계 된 것을 확인하였다.

Keywords

References

  1. R. E. Aldrich, "Three elements optically compensated two position zoom for commercial FLIRs," Proc. SPIE 2539, Zoom Lenses (1995).
  2. D. W. Anderson, "M1A2 tank commander's independent thermal viewer optics: optics design perspective," Proc. SPIE 1970, 128-138 (1993).
  3. M. Norland and A. Rodland, "Design of high performance IR sensor," Proc. SPIE 2269, 462-471 (1994).
  4. M. C. del la Fuente, "A compact dual FOV objective for $3-5{\mu}m$ waveband," Proc. SPIE 3061, 348-355 (1997).
  5. M. N. Akram, "Design of a dual field-of-view optical system for infrared focal plane arrays," Proc. SPIE 4768, 13-23 (2002).
  6. M. Meftah, F. Montmessin, O. Korablev,A. Trokhimovsky, G. Poiet, and J.-B. Bel, "High-resolution infrared detector and its electronic unit for space application," Proc. SPIE 9469, 946905 (2015).
  7. J. W. Howard and I. R. Abel, "Narcissus: reflections on retroreflections in thermal imaging systems," Appl. Opt. 21, 3393-3397 (1982). https://doi.org/10.1364/AO.21.003393
  8. L. M. Scherr and H. J. Orlando, "Narcissus considerations in optical design for infrared starring arrays," Proc. SPIE 2864, 442-452 (1996).
  9. M. N. Akram, "Simulation and control of narcissus phenomenon using nonsequential ray tracing. I. Staring camera in $3-5{\mu}m$ waveband," Appl. Opt. 49, 1185-1195 (2010). https://doi.org/10.1364/AO.49.001185
  10. M. Bayar and O. F. Farsakoglu, "Mechanically active athermalization of a forward looking infrared system," Infrared Phys. Technol. 43, 91-99 (2002). https://doi.org/10.1016/S1350-4495(01)00124-4
  11. D. Jeong, J. H. Lee, H. Jeong, C. M. Ok, and H.-W. Park, "Infrared dual-FOV optical system design with EO/laser common-aperture optics," Curr. Opt. Photon. 2 (2018) (in publication).
  12. J. Huddleston, A. Symmons, and R. Pini, "Comparison of the thermal effects on LWIR optical designs utilizing different infrared optical materials," Proc. SPIE 9070, 90702E (2014).
  13. R. Guodong, Z. Liang, L. Weihua, and P. Xiaodong, "Method of narcissus analysis in infrared system based on ASAP," Proc. SPIE 9795, 97952J (2015).
  14. S. H. Kim, G. B. Ahn, J. C. Jung, and M. S. Jo, "Design of two zoom infrared camera using noise uniformity correction by shutter lens," Korean J. Opt. Photon. 18, 137-139 (2007).