AN ARTINIAN POINT-CONFIGURATION QUOTIENT AND THE STRONG LEFSCHETZ PROPERTY

YOUNG ROCK KIM† AND YONG-SU SHIN‡

Abstract. In this paper, we study an Artinian point-configuration quotient having the SLP. We show that an Artinian quotient of points in \mathbb{P}^n has the SLP when the union of two sets of points has a specific Hilbert function. As an application, we prove that an Artinian linear star configuration quotient $R/(I_X + I_Y)$ has the SLP if X and Y are linear star-configurations in \mathbb{P}^2 of type s and t for $s \geq \binom{t}{2} - 1$ and $t \geq 3$. We also show that an Artinian k-configuration quotient $R/(I_X + I_Y)$ has the SLP if X is a k-configuration of type $(1,2)$ or $(1,2,3)$ in \mathbb{P}^2, and $X \cup Y$ is a basic configuration in \mathbb{P}^2.

1. Introduction

Ideals of sets of finite points in \mathbb{P}^n have been studied for a long time ([8,9,11]), and in particular we consider an ideal of a special configuration in \mathbb{P}^n, so called a star-configuration and a k-configuration in \mathbb{P}^n ([1–3, 6, 7, 9–11, 15]). In 2006, Geramita, Migliore, and Sabourin introduced the notion of a star-configuration set of points in \mathbb{P}^2 (see [10]), the name having been inspired by the fact that 10-points in \mathbb{P}^2, defined by 5 general linear forms in $\mathbb{k}[x_0, x_1, x_2]$ resembles a star. In this paper, we refer to this as a “linear star-configuration”, as more general definition of star-configurations has evolved through the subsequent literature (see [1,6,7,19]). Indeed, a star-configuration in \mathbb{P}^n has been studied to find the dimension of secant varieties to the variety of reducible forms in $R = \mathbb{k}[x_0, x_1, \ldots, x_n]$, where \mathbb{k} is a field of characteristic 0 (see [4,5,20]).

If R/I is a standard graded Artinian algebra and ℓ is a general linear form, we recall that R/I is said to have the weak Lefschetz property (WLP) if the
multiplication map by ℓ

$$[R/I]_d \xrightarrow{\ell} [R/I]_{d+1}$$

has maximal rank for every $d \geq 0$. Over the years, there have been several papers which have devoted to a classification of possible Artinian quotients having the WLP (see [1,8,9,13,14,16–18,21,22]). The strong Lefschetz property (SLP) says that for every $i \geq 1$ the multiplication map by ℓ^i

$$[R/I]_d \xrightarrow{\ell^i} [R/I]_{d+i}$$

has maximal rank for every $d \geq 0$ ([13, 14, 17]). In [14] the authors proved that a complete intersection ideal in $k[x_0, x_1]$ has the SLP. Moreover, in [13], the authors give a nice description for a graded Artinian ring having the SLP by using the so-called Jordan type (see Lemma 2.2). The Jordan type is the partition of n specifying the lengths of blocks in the Jordan block matrix determined by the multiplication map by ℓ in a suitable k-basis for R/I. Here, we apply this result often to show that some Artinian quotients of the ideals of points in \mathbb{P}^n have the SLP.

We use Hilbert functions for many our arguments. Given a homogeneous ideal $I \subset R$, the Hilbert function of R/I, denoted $H_{R/I}$, is the numerical function $H_{R/I} : \mathbb{Z}^+ \cup \{0\} \to \mathbb{Z}^+ \cup \{0\}$ defined by

$$H_{R/I}(i) := \dim_k[R/I]_i = \dim_k[R]_i - \dim_k[I]_i,$$

where $[R]_i$ and $[I]_i$ denote the i-th graded component of R and I, respectively. If $I := I_X$ is the defining ideal of a subscheme X in \mathbb{P}^n, then we denote

$$H_{R/I_X}(i) := H_X(i) \quad \text{for} \quad i \geq 0,$$

and call it the Hilbert function of X.

Let $R = k[x_0, x_1, \ldots, x_n]$ be a polynomial ring over a field k of characteristic 0. For positive integers r and s with $1 \leq r \leq \min\{n, s\}$, suppose F_1, \ldots, F_s are general forms in R of degrees d_1, \ldots, d_s, respectively. Here s general forms F_1, \ldots, F_s in R means that all subsets of size $1 \leq r \leq \min\{n+1, s\}$ are regular sequences in R, and if $\mathcal{H} = \{F_1, \ldots, F_s\}$ is a collection of distinct hypersurfaces in \mathbb{P}^n corresponding to general F_1, \ldots, F_s respectively, then the hypersurfaces meet properly, by which we mean that the intersection of any r of these hypersurfaces with $1 \leq r \leq \min\{n, s\}$ has codimension r. We call the variety X defined by the ideal

$$\bigcap_{1 \leq i_1 < \cdots < i_r \leq s} (F_{i_1}, \ldots, F_{i_r})$$

a star-configuration in \mathbb{P}^n of type (r, s). In particular, if X is a star-configuration in \mathbb{P}^n of type (n, s), then we simply call a point star-configuration in \mathbb{P}^n of type s for short.
Notice that each \(n \)-forms \(F_{i_1}, \ldots, F_{i_n} \) of \(s \)-general forms \(F_1, \ldots, F_s \) in \(R \) define \(d_{i_1} \cdots d_{i_n} \) points in \(\mathbb{P}^n \) for each \(1 \leq i_1 < \cdots < i_n \leq s \). Thus the ideal
\[
\bigcap_{1 \leq i_1 < \cdots < i_n \leq s} (F_{i_1}, \ldots, F_{i_n})
\]
defines a finite set \(X \) of points in \(\mathbb{P}^n \) with
\[
\deg(X) = \sum_{1 \leq i_1 < i_2 < \cdots < i_n \leq s} d_{i_1} d_{i_2} \cdots d_{i_n}.
\]
Furthermore, if \(F_1, \ldots, F_s \) are general linear (quadratic, cubic, quartic, quintic, etc) forms in \(R \), then we call \(X \) a linear (quadratic, cubic, quartic, quintic, etc) star-configuration in \(\mathbb{P}^n \) of type \(s \), respectively.

To provide some additional focus to this paper, we consider the following questions.

Question 1.1. Let \(X \) and \(Y \) be finite sets of points in \(\mathbb{P}^n \) and \(R = k[x_0, x_1, \ldots, x_n] \).

(a) Does an Artinian ring \(R/(I_X + I_Y) \) have the WLP?
(b) Does an Artinian ring \(R/(I_X + I_Y) \) have the SLP?

Question 1.2. More precisely, let \(X \) and \(Y \) be finite point star configurations in \(\mathbb{P}^n \), or \(X \) be a \(k \)-configuration in \(\mathbb{P}^n \) such that \(X \cup Y \) is a basic configuration in \(\mathbb{P}^n \).

(a) Does an Artinian ring \(R/(I_X + I_Y) \) have the WLP?
(b) Does an Artinian ring \(R/(I_X + I_Y) \) have the SLP?

In [1], the authors proved that an Artinian linear star-configuration quotient in \(\mathbb{P}^2 \) has the WLP, which is a partial answer to Question 1.2(a). Indeed, it is still true that any finite number of an Artinian linear point star-configuration quotient in \(\mathbb{P}^n \) has the WLP. In [8,9], the authors show that Question 1.2(a) is true in general if \(X \) is a \(k \)-configuration in \(\mathbb{P}^n \) and \(X \cup Y \) is a basic configuration in \(\mathbb{P}^n \) with the condition \(2\sigma(X) \leq \sigma(X \cup Y) \), where
\[
\sigma(X) = \min\{i | H_X(i-1) = H_X(i)\}.
\]

In this paper, we focus on Questions 1.1(b) and 1.2(b). More precisely, we first find a condition in which an Artinian quotient of two sets of points in \(\mathbb{P}^n \) has the SLP (see Lemma 2.4 and Proposition 2.5). Next we find some Artinian linear star configuration quotient in \(\mathbb{P}^2 \) that has the SLP (see Corollary 2.9). Then, we find an Artinian \(k \)-configuration quotient having the SLP (see Proposition 3.4 and Theorem 3.6). Unfortunately, we do not have any counter example of an Artinian quotient \(R/(I_X + I_Y) \) of two point sets in \(\mathbb{P}^n \), which does not have the SLP, and thus we expect Question 1.1(a) and (b) are true in general, especially when \(X \) and \(Y \) are sets of general points in \(\mathbb{P}^n \).

Acknowledgement. We took inspiration for this subject from Professor Anthony Iarrobino during the Research Station on Commutative Algebra, June 13-18, 2016, which was supported by the Korea Institute of Advanced Study.
2. Artinian linear star-configuration quotients in \(\mathbb{P}^2 \)

In this section, we shall show that an Artinian ring \(R/(I_X + I_Y) \) has the SLP if \(X \) and \(Y \) are linear star-configurations in \(\mathbb{P}^2 \) of type \(s \) and \(t \) with \(s \geq \left(\frac{t^2}{4} \right) - 1 \) and \(t \geq 3 \), respectively.

We first introduce the following two results of a star-configuration in \(\mathbb{P}^n \) in [13, 22].

Remark 2.1. Let \(k \) be a field of characteristic zero and let \(F \in k[x_0, x_1, \ldots, x_n] = R = \bigoplus_{i \geq 0} R_i \) be a homogeneous polynomial (form) of degree \(d \), i.e., \(F \in R_d \). It is well known that in this case each \(R_i \) has a basis consisting of \(i \)-th powers of linear forms. Thus we may write

\[
F = \sum_{i=1}^{r} \alpha_i L_i^d, \quad \alpha_i \in k, \ L_i \in R_i.
\]

If \(k \) is algebraically closed (which we now assume for the rest of the paper), then each \(\alpha_i = \beta_i^d \) for some \(\beta_i \in k \) and so we can write

\[
(2.1) \quad F = \sum_{i=1}^{r} (\beta_i L_i)^d = \sum_{i=1}^{r} M_i^d, \quad M_i \in R_i.
\]

We call a description of \(F \) as in equation (2.1), a Waring Decomposition of \(F \). The least integer \(r \) such that \(F \) has a Waring Decomposition with exactly \(r \) summands is called the Waring Rank (or simply the rank) of \(F \).

Lemma 2.2 ([13]). Assume \(A \) is graded and \(H_A \) is unimodal. Then

(a) \(A \) has the WLP if and only if the number of parts of the Jordan type \(J_\ell = \max \{ H_A(i) \} \) (The Sperner number of \(A \));

(b) \(\ell \) is a strong Lefschetz element of \(A \) if and only if \(J_\ell = H_\ell^X \).

Proposition 2.3 ([22, Proposition 2.5]). Let \(X \) and \(Y \) be linear star-configurations in \(\mathbb{P}^2 \) of type \(s \) and \(t \), respectively, with \(3 \leq t \) and \(s \geq \left\lfloor \frac{1}{2} \left(\frac{t^2}{4} \right) \right\rfloor \). Then \(X \cup Y \) has generic Hilbert function.

Recall that

\[
H_A : h_0 \ h_1 \ \cdots \ h_s
\]

is said to be unimodal if there exists \(j \) such that

\[
\begin{cases}
 h_i \leq h_{i+1} & (i < j), \\
 h_i \geq h_{i+1} & (j \leq i).
\end{cases}
\]

Lemma 2.4. Let \(X \) be a finite set of points in \(\mathbb{P}^n \) and let \(A \) be an Artinian quotient of the coordinate ring of \(X \). Assume that \(H_A(i) = H_X(i) \) for every \(0 \leq i \leq s-1 \) and \(A_s = 0 \). Then an Artinian ring \(A \) has the SLP.

Proof. First, we assume that the Hilbert function of \(A \) is of the form

\[
H_A : h_0 \ h_1 \ \cdots \ h_{\sigma-1} \ h_\sigma \ \cdots \ h_{s-1} \ 0.
\]
where \(h_{\sigma-2} < h_{\sigma-1} = h_\sigma = \cdots = h_{s-1} \).

Let \(\ell \) be a general linear form in \(A_1 \). Since \(\ell \) is not a zero divisor of \(A \), we see that the multiplication map by \(\ell^{s-1} \)
\[
[R/I_x]_0 = [A]_0 \times^{\ell^{s-1}} [A]_{s-1} = [R/I_x]_{s-1}
\]
is injective. Hence we have a string of length \(s \)
\[1, \ell, \ldots, \ell^{s-1},\]
and so the Jordan type \(J_{\ell} \) for \(H_A \) is of the form
\[J_{\ell} = (s, \ldots, \cdot \cdot \cdot).\]

(i) Let \(i = 1 \). Then the multiplication map by \(\ell^{s-2} \)
\[
[R/I_x]_1 = [A]_1 \times^{\ell^{s-2}} [A]_{s-1} = [R/I_x]_{s-1}
\]
is injective. Hence there are \(g_1 \) := \((h_1 - h_0) = (h_1 - 1)\) linear forms
\(F_{1,1}, F_{1,2}, \ldots, F_{1,g_1} \in [A]_1 \) such that the \(h_1 \) linear forms
\(\ell, F_{1,1}, F_{1,2}, \ldots, F_{1,g_1} \)
are linearly independent. Hence there are \(g_1 \)-strings of length \((s - 1)\)
\[F_{1,1}, F_{1,1}\ell, \ldots, F_{1,1}\ell^{s-2}, \quad \text{and} \quad F_{1,2}, F_{1,2}\ell, \ldots, F_{1,2}\ell^{s-2}; \]
\[\vdots \]
\[F_{1,g_1}, F_{1,g_1}\ell, \ldots, F_{1,g_1}\ell^{s-2}. \]

(ii) For \(1 \leq i < \sigma - 1 \) and \(1 \leq j \leq i \), define
\[g_j := h_j - h_{j-1}\]
for such \(j \). Assume that there are \(g_j \)-forms \(F_{j,1}, \ldots, F_{j,g_j} \in [A]_j \) and there are \(g_j \)-strings of length \((s - j)\)
\[F_{j,1}, F_{j,1}\ell, \ldots, F_{j,1}\ell^{s-j-1}, \]
\[F_{j,2}, F_{j,2}\ell, \ldots, F_{j,2}\ell^{s-j-1}, \]
\[\vdots \]
\[F_{j,g_j}, F_{j,g_j}\ell, \ldots, F_{j,g_j}\ell^{s-j} \]
such that the \((1 + \sum_{k=1}^{i} g_k)\)-forms
\[\ell^i, F_{1,1}\ell^{i-1}, \ldots, F_{i,g_i}\ell^{i-1}, \ldots, F_{j-1,1}\ell, \ldots, F_{j-1,g_{j-1}}\ell, F_{j,1}, \ldots, F_{j,g_j} \]
are linearly independent for such \(j \).

Since the multiplication map by \(\ell^{(s-1)-(i+1)} \)
\[
[R/I_x]_{i+1} = [A]_{i+1} \times^{\ell^{(s-1)-(i+1)}} [A]_{s-1} = [R/I_x]_{s-1}
\]
is injective, there are linearly independent \(g_{i+1} := (h_{i+1} - h_i) \)-forms \(F_{i+1,1}, \ldots, F_{i+1,g_{i+1}} \in [A]_{i+1} \). Then the following \((1 + \sum_{k=1}^{i+1} g_k)\)-forms

\[
\ell^{i+1}, F_{1,1}, \ell^i, \ldots, F_{1,g_{i+1}} \ell^i, \ldots, F_{i-1,1}, \ell^2, F_{i-1,g_i} \ell^2, F_{i,1}, \ell, F_{i,g_i} \ell, F_{i+1,1}, \ldots, F_{i+1,g_{i+1}} \]
\]

are linearly independent as well. Hence we have \(g_{i+1}\)-strings of length \((s - i - 1)\)

\[
\begin{align*}
F_{i+1,1}, F_{i+1,1} \ell, & \ldots, F_{i+1,1} \ell^{s-i-2}, \\
F_{i+1,2}, F_{i+1,2} \ell, & \ldots, F_{i+1,2} \ell^{s-i-2}, \\
& \vdots \\
F_{i+1,g_{i+1}}, F_{i+1,g_{i+1}} \ell, & \ldots, F_{i+1,g_{i+1}} \ell^{s-i-2}.
\end{align*}
\]

It is from (i) \(\sim \) (ii) that the Jordan type

\[
J_{\ell} = (s, s-1, \ldots, s-1, s-i, \ldots, s-i, \ldots, s-\sigma+1, \ldots, s-\sigma+1) = H_{A_Y}^\ell,
\]

as we wished. Therefore, by Lemma 2.2, an Artinian ring has the SLP, which completes the proof. \(\square \)

The following proposition is immediate from Lemma 2.4.

Proposition 2.5. Let \(X \) and \(Y \) be linear star-configurations in \(\mathbb{P}^2 \) of type \(t \) and \(s \) with \(t \geq 2 \) and \(s \geq (t-1)_2 \). Then an Artinian ring \(R/(I_X + I_Y) \) has the SLP.

Proof. First, note that the Hilbert functions of \(R/I_X, R/I_Y, \) and \(R/(I_X \cap I_Y) \) (see Proposition 2.3) are

\[
\begin{align*}
H_{R/I_X} & : 1 \ 3 \ \cdots \ \binom{(t-2)-nd}{2} \ \binom{(t-1)-nd}{2} \to, \\
H_{R/I_Y} & : 1 \ 3 \ \cdots \ \binom{(t-2)-nd}{2} \ \binom{(t+1)-nd}{2} \ \binom{(s-2)-nd}{2} \ \binom{s-1-st}{2} \to, \\
H_{R/(I_X \cap I_Y)} & : 1 \ 3 \ \cdots \ \binom{(t-2)-nd}{2} \ \binom{(t+1)-nd}{2} \ \binom{(s-2)-nd}{2} \ \binom{s-1-st}{2} \ = \binom{t}{2} \ \binom{s}{2} \ \to,
\end{align*}
\]

respectively. Using the exact sequence

\[
0 \to R/I_X \cap I_Y \to R/I_X \oplus R/I_Y \to R/(I_X + I_Y) \to 0,
\]

the Hilbert function of \(R/(I_X + I_Y) \) is

\[
H_{R/(I_X + I_Y)} : 1 \ 3 \ \cdots \ \binom{(t-2)-nd}{2} \ \cdots \ \binom{(s-2)-nd}{2} \ 0 \to,
\]

and so by Lemma 2.4, an Artinian linear star configuration quotient \(R/(I_X + I_Y) \) has the SLP, which completes the proof. \(\square \)

Example 2.6. Let \(X \) and \(Y \) be linear star-configurations in \(\mathbb{P}^2 \) of type \(5 \) and \(9 \), respectively. Note that \(9 = (\binom{5}{2}) - 1 \). By Proposition 2.3 the Hilbert function of an Artinian ring \(A := R/(I_X + I_Y) \) is

\[
(1, 3, 6, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 8-nd).
\]
(a) By Waring decomposition, there is a general linear form $\ell \in [A]_1$ such that
$$\ell^8 \in [A]_8,$$
i.e., we have a string of length 9
$$1, \ell, \ldots, \ell^8.$$Hence the Jordan type J_ℓ is of the form
$$J_\ell = (9, \ldots).$$

(b) Note that the multiplication map by ℓ^6
$$[A]_1 \times^{\ell^6} \to [A]_7$$is injective, and the multiplication map by ℓ^7
$$[A]_1 \times^{\ell^7} \to [A]_8$$is surjective. Then we can choose a basis $\{\ell, F_{1,1}, F_{1,2}\}$ for $[A]_1$ such that
$$F_{1,1}\ell^6, F_{1,2}\ell^6 \neq 0, \quad \text{and} \quad F_{1,1}\ell^7, F_{1,2}\ell^7 = 0.$$Moreover, since $\{F_{1,1}\ell^6, F_{1,2}\ell^6\}$ is linearly independent, we have 2-strings of length 7
$$F_{1,1}, F_{1,1}\ell, \ldots, F_{1,1}\ell^6, \quad \text{and} \quad F_{1,2}, F_{1,2}\ell, \ldots, F_{1,2}\ell^6.$$Note that the multiplication map by ℓ^5
$$[A]_2 \times^{\ell^5} \to [A]_7$$is injective, and the multiplication map by ℓ^6
$$[A]_2 \times^{\ell^6} \to [A]_8$$is surjective. Then we can choose a basis $\{\ell^2, F_{1,1}\ell, F_{1,2}\ell, F_{2,1}, F_{2,2}, F_{2,3}\}$ for $[A]_2$ such that
$$F_{2,1}\ell^5, F_{2,2}\ell^5, F_{2,3}\ell^5 \neq 0, \quad \text{and} \quad F_{2,1}\ell^6, F_{2,2}\ell^6, F_{2,3}\ell^6 = 0.$$Moreover, since $\{F_{2,1}\ell^5, F_{2,2}\ell^5, F_{2,3}\ell^5\}$ is linearly independent, we have 3-strings of length 6
$$F_{2,1}, F_{2,1}\ell, \ldots, F_{2,1}\ell^5, \quad F_{2,2}, F_{2,2}\ell, \ldots, F_{2,2}\ell^5, \quad \text{and} \quad F_{2,3}, F_{2,3}\ell, \ldots, F_{2,3}\ell^5.$$Note that the multiplication map by ℓ^4
$$[A]_3 \times^{\ell^4} \to [A]_7$$is injective, and the multiplication map by ℓ^6
$$[A]_3 \times^{\ell^6} \to [A]_8$$
is surjective. Then we can choose a basis \{\ell^3, F_{1,1}\ell^2, F_{1,2}\ell^2, F_{2,1}\ell, F_{2,2}\ell, F_{2,3}\ell, F_{3,1}, \ldots, F_{3,4}\} for \([A]_3\) such that
\[F_{3,1}\ell^4, \ldots, F_{3,4}\ell^4 \neq 0, \quad \text{and} \quad F_{3,1}\ell^5, \ldots, F_{3,4}\ell^5 = 0. \]

Moreover, since \{\ell^3, F_{3,1}\ell^4, \ldots, F_{3,4}\ell^4\} is linearly independent, we have 4-strings of length 5
\[F_{3,1}, F_{3,2}, F_{3,3}, F_{3,4}, \ldots, F_{3,1}\ell^4, F_{3,2}\ell^4, F_{3,3}\ell^4, F_{3,4}\ell^4, \ldots, F_{3,1}\ell^5, F_{3,2}\ell^5, F_{3,3}\ell^5, F_{3,4}\ell^5. \]

This shows that the Jordan type of \(H_{R/(I_X+I_Y)}\) is
\[J_\ell = (9, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5) = H_{R/(I_X+I_Y)}. \]

Thus, by Lemma 2.2, an Artinian quotient of two linear star-configurations in \(\mathbb{P}^2\) of type 5 and 9 has the SLP, as we wished.

Example 2.6 motivates the following proposition.

Proposition 2.7. Let \(\mathcal{X}\) be a finite set of points in \(\mathbb{P}^n\) and let \(A\) be an Artinian quotient of the coordinate ring of \(\mathcal{X}\). Assume that \(H_A(i) = H_{\mathcal{X}}(i)\) for every \(0 \leq i \leq s - 2\) with \(A_s = 0\), and the Hilbert function of \(A\) is of the form
\[H_A : h_0 \ h_1 \ldots \ h_{\sigma-1} \ h_{\sigma} \ldots \ h_{s-1}^{(s-2)-nd} \ h_{s} \ h_{s-1} \ 0 \]
where \(h_{\sigma-2} < h_{\sigma-1} = h_{\sigma}\) and \(h_{s-1} = 1\). Then an Artinian ring \(A\) has the SLP.

Proof. We first define
\[g_i := h_i - h_{i-1} \quad \text{for} \quad i = 1, \ldots, \sigma - 1. \]

(a) By Waring decomposition, there is a linear form \(\ell \in [A]_1\) such that
\[\ell^{s-1} \in [A]_{s-1}. \]

In other words, there is a string of length \(s\) as
\[1, \ell, \ldots, \ell^{s-1}. \]

Hence Jordan type of \(H_{R/(I_X+I_Y)}\) is of the form
\[J_\ell = (s, \ldots). \]

(b) Note that the multiplication map by \(\ell^{s-3}\)
\[[R/I_X]_1 = [A]_1 \times_{[A]_{s-3}} [A]_{s-2} = [R/I_X]_{s-2} \]
is injective, and the multiplication map by \(\ell^{s-2}\)
\[[A]_1 \times_{[A]_{s-2}} [A]_{s-1} \]
is surjective. Then we can choose a basis \(\{ \ell, F_{1,1}, F_{1,2}, \ldots, F_{1,g_1} \} \) for \([A]_i\) such that
\[
F_{1,1}^{s-3}, F_{1,2}^{s-3}, \ldots, F_{1,g_1}^{s-3} \neq 0, \quad \text{and} \quad F_{1,1}^{s-2}, F_{1,2}^{s-2}, \ldots, F_{1,g_1}^{s-2} = 0.
\]
Moreover, since \(\{ F_{1,1}^{s-3}, F_{1,2}^{s-3}, \ldots, F_{1,g_1}^{s-3} \} \) is linearly independent, we have \(g_1 \)-strings of length \((s-2)\)
\[
F_{1,1}, F_{1,1}^{s-3}, \ldots, F_{1,1}^{s-3},
F_{1,2}, F_{1,2}^{s-3}, \ldots, F_{1,2}^{s-3},
\vdots
F_{1,g_1-1}, F_{1,g_1-1}^{s-3}, \ldots, F_{1,g_1-1}^{s-3}, \quad \text{and} \quad
F_{1,g_1}, F_{1,g_1}^{s-3}, \ldots, F_{1,g_1}^{s-3}.
\]
This means that Jordan type of \(H_{R/(I_x+I_y)} \) is of the form
\[
J_\ell = (s, s-2, \ldots, s-2, \ldots).
\]

(c) Let \(1 \leq i \leq \sigma - 1 \). Note that the multiplication map by \(\ell^{s-i-2} \)
\[
[R/I_x]_i = [A]_i \times^{(s-i-2)} [A]_{s-2} = [R/I_x]_{s-2}
\]
is injective, and the multiplication map by \(\ell^{s-i-1} \)
\[
[R/I_x]_i = [A]_i \times^{(s-i-1)} [A]_{s-1}
\]
is surjective. Then we can choose a basis \(B_i \)
\[
B_i = \left\{ \ell, F_{1,1}^{s-i-1}, \ldots, F_{1,g_1}^{s-i-1}, F_{2,1}^{s-i-2}, \ldots, F_{2,g_2}^{s-i-2}, \ldots, F_{i-1,1}^{s-i-1}, \ldots, F_{i-1,g_{i-1}}^{s-i-1}, F_{i,1}, \ldots, F_{i,g_i} \right\}
\]
for \([A]_i\) such that
\[
F_{1,1}^{s-i-2}, \ldots, F_{i,g_i}^{s-i-2} \neq 0, \quad \text{and} \quad F_{1,1}^{s-i-1}, \ldots, F_{i,g_i}^{s-i-1} = 0.
\]
Moreover, since \(\{ F_{1,1}^{s-i-2}, \ldots, F_{i,g_i}^{s-i-2} \} \) is linearly independent, we have \(g_i \)-strings of length \((s-i-1)\)
\[
F_{1,1}, F_{1,1}^{s-i-2}, \ldots, F_{1,1}^{s-i-2},
F_{1,2}, F_{1,2}^{s-i-2}, \ldots, F_{1,2}^{s-i-2},
\vdots
F_{i-1,1}, F_{i-1,1}^{s-i-2}, \ldots, F_{i-1,1}^{s-i-2}, \quad \text{and} \quad
F_{i,1}, F_{i,1}^{s-i-2}, \ldots, F_{i,1}^{s-i-2}.
\]
Hence Jordan type of \(H_{R/(I_x+I_y)} \) is of the form
\[
J_\ell = (s, s-2, s-2, \ldots, s-2, \ldots, s-i-1, s-1, \ldots, s-1, \ldots)
\]
for such i.

It is from (a) \sim (c) that the Jordan type J_{ℓ} of $H_{R/(I_X+I_Y)}$ is

$$
J_{\ell} = H_{R/(I_X+I_Y)} \bigvee
(s, s-2, s-2, \ldots, s-2, \ldots, s-i, s-i, \ldots, s-i, \ldots, g_{s-1}, s, \ldots, s, s)\text{,}
$$

Therefore, by Lemma 2.2, an Artinian ring $R/(I_X + I_Y)$ has the SLP, as we wished. \square

The following two corollaries are immediate from Proposition 2.7.

Corollary 2.8. Let X and Y be finite sets of general points in \mathbb{P}^n with $n \geq 2$ and $s \geq t \geq n$. Assume that

$$
\binom{s}{n} \leq \deg(X) < \binom{s+1}{n}, \quad \binom{t}{n} \leq \deg(Y) < \binom{t+1}{n},
$$

and

$$
\deg(X) + \deg(Y) = \binom{s+1}{n} + 1.
$$

Then an Artinian ring $R/(I_X + I_Y)$ has the SLP.

Proof. Since X and Y are finite sets of general points in \mathbb{P}^n, we get that the Hilbert functions of R/I_X, R/I_Y, and $R/(I_X \cap I_Y)$ are

$$
H_{R/I_X} : 1 \quad \binom{s+1}{n} \quad \binom{s+1}{n} \quad \binom{s-1}{n} \quad \binom{s-1}{n} \quad \deg(X) \quad \rightarrow,
$$

$$
H_{R/I_Y} : 1 \quad \binom{t+1}{n} \quad \binom{t+1}{n} \quad \binom{t-1}{n} \quad \binom{t-1}{n} \quad \deg(Y) \quad \deg(Y) \quad \rightarrow,
$$

$$
H_{R/(I_X \cap I_Y)} : 1 \quad \binom{s+1}{n} \quad \binom{s+1}{n} \quad \binom{s}{n} \quad \binom{s}{n} \quad \binom{s-1}{n} \quad \deg(Y) \quad \deg(Y) \quad \deg(Y) \quad [\deg(X) + \deg(Y)] - 1 \quad \rightarrow.
$$

respectively. Using the exact sequence

$$
0 \rightarrow R/(I_X \cap I_Y) \rightarrow R/I_X \oplus R/I_Y \rightarrow R/(I_X + I_Y) \rightarrow 0,
$$

the Hilbert function of $R/(I_X + I_Y)$ is

$$
H_{R/(I_X+I_Y)} : 1 \quad 3 \quad \binom{t-n}{n} \quad \binom{t-n}{n} \quad \binom{s-n}{n} \quad \deg(Y) \quad \deg(Y) \quad [\deg(X) + \deg(Y)] - 1 \quad \rightarrow,
$$

and so by Proposition 2.7, an Artinian ring $R/(I_X + I_Y)$ has the SLP, which completes the proof. \square

Corollary 2.9. Let X and Y be linear star-configurations in \mathbb{P}^2 of type s and t with $s \geq \binom{t}{2} - 1$ and $t \geq 3$. Then an Artinian linear star-configuration quotient $R/(I_X + I_Y)$ has the SLP.
Proof. By Proposition 2.5, it holds for \(s \geq \binom{t}{2} \). So we assume that \(s = \binom{t}{2} - 1 \).

First note that
\[
\left[\deg(X) + \deg(Y) \right] - \left(\frac{s + 1}{2} \right) = \left(\frac{s}{2} + \frac{t}{2} \right) - \left(\frac{s + 1}{2} \right) = \left(\frac{s}{2} + s + 1 \right) - \left(\frac{s + 1}{2} \right) = 1.
\]

Hence the Hilbert functions of \(R/I_X, R/I_Y, \) and \(R/(I_X \cap I_Y) \) (see Proposition 2.3) are
\[
\begin{align*}
H_{R/I_X} &: 1 \ 3 \ \cdots \ \binom{t}{2} \ \cdots \ \binom{s+1}{2} \ \cdots \ \binom{s-2}{2} \\
H_{R/I_Y} &: 1 \ 3 \ \cdots \ \binom{t}{2} \ \cdots \ \binom{t+1}{2} \ \cdots \ \binom{s}{2} \\
H_{R/(I_X \cap I_Y)} &: 1 \ 3 \ \cdots \ \binom{t}{2} \ \cdots \ \binom{s-2}{2} \ \cdots \ \binom{s-1}{2} = \binom{s}{2} + \binom{t}{2} - 1 \rightarrow,
\end{align*}
\]
respectively. Using the exact sequence
\[
0 \rightarrow R/(I_X \cap I_Y) \rightarrow R/I_X \oplus R/I_Y \rightarrow R/(I_X + I_Y) \rightarrow 0,
\]
the Hilbert function of \(R/(I_X + I_Y) \) is
\[
H_{R/(I_X + I_Y)} : 1 \ 3 \ \cdots \ \binom{t}{2} \ \cdots \ \binom{t}{2} \ 1 \rightarrow,
\]
and so by Proposition 2.7, an Artinian linear star-configuration quotient \(R/(I_X + I_Y) \) has the SLP, as we wished. \(\square \)

3. Artinian \(k \)-configuration quotients in \(\mathbb{P}^2 \)

In this section, we shall introduce another Artinian quotient having the SLP. We first recall a definition of a \(k \)-configuration in \(\mathbb{P}^2 \) and some preliminary result.

Definition 3.1. A \(k \)-configuration of points in \(\mathbb{P}^2 \) is a finite set \(\mathbb{X} \) of points in \(\mathbb{P}^2 \) which satisfy the following conditions: there exist integers \(1 \leq d_1 < \cdots < d_m \), and subsets \(\mathbb{X}_1, \ldots, \mathbb{X}_m \) of \(\mathbb{X} \), and distinct lines \(L_1, \ldots, L_m \subseteq \mathbb{P}^2 \) such that
\begin{itemize}
 \item[(a)] \(\mathbb{X} = \bigcup_{i=1}^{m} \mathbb{X}_i \),
 \item[(b)] \(|\mathbb{X}_i| = d_i \) and \(\mathbb{X}_i \subseteq L_i \) for each \(i = 1, \ldots, m \), and
 \item[(c)] \(L_i \) (\(1 < i \leq m \)) does not contain any points of \(\mathbb{X}_j \) for all \(j < i \).
\end{itemize}

In this case, the \(k \)-configuration in \(\mathbb{P}^2 \) is said to be of type \((d_1, \ldots, d_m)\).

Recall that a finite complete intersection set of points \(\mathbb{Z} \) in \(\mathbb{P}^n \) is said to be a basic configuration in \(\mathbb{P}^n \) (see [11, 12]) if there exist integers \(r_1, \ldots, r_n \) and distinct hyperplanes \(L_{ij} (1 \leq i \leq n, 1 \leq j \leq r_i) \) such that
\[
\mathbb{Z} = \mathbb{H}_1 \cap \cdots \cap \mathbb{H}_n \text{ as schemes, where } \mathbb{H}_i = L_{i1} \cup \cdots \cup L_{ir_i}.
\]

In this case \(\mathbb{Z} \) is said to be of type \((r_1, \ldots, r_n)\).

Before we prove our main theorem, we first introduce two lemmas.
Lemma 3.2. Let \(X \) be a \(k \)-configuration in \(\mathbb{P}^2 \) of type \((1, 2, \ldots, d)\) (see Figure 1), and let \(L_i \) and \(M_j \) be lines in \(\mathbb{P}^2 \) defined by linear forms \(x_0 - (i - 1)x_2 \) and \(x_1 - (j - 1)x_2 \) for \(1 \leq i, j \leq d - 1 \), respectively. Then the multiplication map by \(L_1 := x_0 \)

\[
[R/I_X]_i \times L_1^i \to [R/I_X]_{i+1}
\]

is injective for \(i \geq 0 \). In particular, for \(j \geq 1 \), the multiplication map by \(L_j \)

\[
[R/I_X]_i \times L_j^i \to [R/I_X]_{i+j}
\]

is injective for every \(i \geq 0 \).

\[\begin{array}{cccccc}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \cdots & \bullet & \bullet \\
\bullet & \bullet & \bullet & \cdots & \cdots & \bullet \\
M_1 & M_2 & M_3 & \cdots & M_{d-1} & M_d \\
\end{array}\]

Figure 1

Proof. If \(d = 1 \), then \(X \) is a set of a single point in \(\mathbb{P}^2 \), so it is immediate. Hence we assume that \(d > 1 \).

Note that

\[
I_X = (L_1 \cdots L_d, M_1L_2 \cdots L_d, M_1M_2L_3 \cdots L_d, \ldots, M_1 \cdots M_{d-1}L_d, M_1M_2 \cdots M_d)
\]

(see [9, 11]) and the Hilbert function of \(R/I_X \) is

\[
H_X : 1 \begin{pmatrix} 1 + 2 \\ 2 \end{pmatrix} \cdots \begin{pmatrix} (d - 1) + 2 \\ 2 \end{pmatrix} \begin{pmatrix} d + 1 \\ 2 \end{pmatrix} \to
\]

(see Theorems 2.7 and 3.6 in [9]).

First, it is obvious that the multiplication map by \(L_1 := x_0 \)

\[
[R/I_X]_i \times L_1^i \to [R/I_X]_{i+1}
\]

is injective for \(0 \leq i \leq d - 2 \).

Let \(i = d - 1 = j_1 + j_2 + j_3 \) with \(0 \leq j_1, j_2, j_3 \leq d \).

(i) Assume \(j_2 = 0 \) and

\[
x_0^{j_1} x_2^{j_3} L_1 \in [I_X]_d = \langle L_1 \cdots L_d, M_1L_2 \cdots L_d, M_1M_2L_3 \cdots L_d, \ldots, M_1 \cdots M_{d-1}L_d, M_1M_2 \cdots M_d \rangle,
\]

that is,

\[
x_0^{j_1} x_2^{j_3} L_1 = \alpha_1 L_1 \cdots L_d + \alpha_2 M_1L_2 \cdots L_d + \alpha_3 M_1M_2L_3 \cdots L_d + \cdots
\]
\[+ \alpha d M_1 \cdots M_{d-1} L_d + \alpha_{d+1} M_1 M_2 \cdots M_d \]

for some \(\alpha_i \in k \). Let \(\wp_{i,j} \) be a point defined by two linear forms \(L_i \) and \(M_j \). Since two linear forms \(L_1 \) and \(M_2 \) vanish on a point \(\wp_{1,2} \), we get that \(\alpha_2 = 0 \).

Moreover, since two forms \(L_1 \) and \(M_3 \) vanish on a point \(\wp_{1,3} \), we have \(\alpha_3 = 0 \).

By continuing this procedure, one can show that

\[\alpha_2 = \cdots = \alpha_d = 0. \]

Hence

\[x_0^{j_1} x_2^{j_2} L_1 = \alpha_1 L_1 \cdots L_d + \alpha_{d+1} M_1 M_2 \cdots M_d, \]

that is,

\[L_1 \mid \alpha_{d+1} M_1 M_2 \cdots M_d \quad \text{and so,} \quad \alpha_{d+1} = 0. \]

It follows that

\[x_0^{j_1} x_2^{j_2} L_1 = \alpha_1 L_1 \cdots L_d, \quad \text{and thus,} \quad \alpha_1 = 0. \]

(ii) Assume \(j_2 > 0 \) and

\[x_0^{j_1} x_1^{j_2} x_2^{j_3} L_1 = \alpha_1 L_1 \cdots L_d + \alpha_2 M_1 L_2 \cdots L_d + \alpha_3 M_1 M_2 L_3 \cdots L_d + \cdots + \alpha_d M_1 \cdots M_{d-1} L_d + \alpha_{d+1} M_1 M_2 \cdots M_d \]

for some \(\alpha_i \in k \). Recall that \(M_1 := x_1 \). Thus

\[M_1 \mid \alpha_1 L_1 \cdots L_d, \quad \text{and hence,} \quad \alpha_1 = 0. \]

By the analogous argument as in (i), one can show that

\[\alpha_2 = \cdots = \alpha_d = \alpha_{d+1} = 0. \]

It is from (i) and (ii) that

\[x_0^{j_1} x_1^{j_2} x_2^{j_3} L_1 \notin [I_X]_d, \]

which means that the multiplication map by \(L_1 \)

\[[R/I_X]_{d-1} \xrightarrow{\times L_1} [R/I_X]_d \]

is injective, and surjective as well. Thus the multiplication map by \(L_1 \)

\[[R/I_X]_1 \xrightarrow{\times L_1} [R/I_X]_{i+1} \]

is injective and surjective for every \(i \geq d - 1 \), as we wished.

So it follows that the multiplication map by \(L_1 \)

\[[R/I_X]_1 \xrightarrow{\times L_1} [R/I_X]_{i+j} \]

is injective for every \(i \geq 0 \). This completes the proof. \(\square \)
The following lemma is immediate from Proposition 2.7. But we introduce another elementary proof here.

Lemma 3.3. Let X be a k-configuration in P^2 of type $(1, 2)$ in a basic configuration Z in P^2 of type $(a, 2)$ with $a \geq 2$, and let $Y := Z - X$, (X is a set of solid 3-points in Z in Figure 2). Then an Artinian k-configuration quotient $R/(I_X + I_Y)$ has the SLP.

\[
\begin{array}{ccccccc}
\bullet & \circ & \circ & \cdots & \circ & \circ & L_2 \\
\bullet & \bullet & \circ & \cdots & \circ & \circ & L_1 \\
M_1 & M_2 & M_3 & \cdots & M_{a-1} & M_a
\end{array}
\]

Figure 2

Proof. First, if $a = 2$, then the Hilbert function of $R/(I_X + I_Y)$ is

\[
H_{R/(I_X + I_Y)} : 1 \ 1 \ 0,
\]

(see [12, Theorem 2.1]) and so it follows that $R/(I_X + I_Y)$ has the SLP.

Now suppose $a \geq 3$ and assume that L_i and M_j are lines defined by linear forms $L_i = x_0 - (i - 1)x_2$ and $M_j = x_1 - (j - 1)x_2$ for i and j, respectively. Let $\varphi_{i,j}$ be a point defined by two linear forms L_i and M_j. Then

\[
\begin{align*}
I_X &= (L_1L_2, L_1M_1, M_1M_2), \\
I_Y &= (L_1L_2, L_2M_3M_4 \cdots M_a, M_2M_3M_4 \cdots M_a)
\end{align*}
\]

(see [9,11]) and an ideal $I_X + I_Y$ has 5-minimal generators, i.e.,

\[
I_X + I_Y = (L_1L_2, L_1M_1, M_1M_2, L_2M_3M_4 \cdots M_a, M_2M_3M_4 \cdots M_a).
\]

By [12, Theorem 2.1], the Hilbert function of $R/(I_X + I_Y)$ is

\[
H_{R/(I_X + I_Y)} : 1 \ 3 \ 3 \ \cdots \ (a-2) \ \text{ad} \ 3 \ 1 \ 0 \ \to.
\]

Note that

\[
H_{R/(I_X + I_Y)}(i) = H_{R/I_X}(i)
\]

for $0 \leq i \leq a - 2$.

(i) Assume $x_0L_1^{a-2} = L_1^{a-1} \in [I_X + I_Y]_{a-1}$. Then

\[
x_0L_1^{a-2} = L_1^{a-1} = F_1L_1L_2 + F_2L_1M_1 + F_3M_1M_2 + \beta_1L_2M_3M_4 \cdots M_a + \beta_2M_2M_3M_4 \cdots M_a
\]

for some $F_i \in R_{a-3}$ and $\beta_j \in k$. Since two linear forms L_1 and M_2 vanish on a point $\varphi_{1,2}$, we get that $\beta_1 = 0$. Similarly, we have $\beta_2 = 0$ as well. This means that

\[
x_0L_1^{a-2} = L_1^{a-1} = F_1L_1L_2 + F_2L_1M_1 + F_3M_1M_2 \in [I_X]_{a-1},
\]

which is a contradiction (see Lemma 3.2). Hence the Jordan type of $H_{R/(I_X + I_Y)}$ is of the form

\[
J_{L_1} = (a, \ldots).
\]
(ii) Similarly, it is from Lemma 3.2 that
\[x_1 L_1^{a-3}, x_2 L_2^{a-3} \notin [I_X]_{a-2} = [I_X + I_Y]_{a-2}. \]
Furthermore, it is obvious that two forms \(x_1 L_1^{a-3}, x_2 L_2^{a-3} \) are linearly independent in \([R/(I_X + I_Y)]_{a-2} = [R/I_X]_{a-2} \). So it is from (i) and (ii) that the Jordan type \(J_{L_1} \) of \(H_{R/(I_X + I_Y)} \) is
\[J_{L_1} = H_{R/(I_X + I_Y)} = (a, a - 2, a - 2). \]
Therefore, by Lemma 2.2, an Artinian \(k \)-configuration quotient \(R/(I_X + I_Y) \) has the SLP.

The following proposition can be obtained using Proposition 2.7. However, we also introduce a different proof here.

Proposition 3.4. Let \(\mathcal{X} \) be a \(k \)-configuration of type \((1, 2)\) contained in a basic configuration \(\mathcal{Z} \) in \(\mathbb{P}^2 \) of type \((a, b)\) with \(2 \leq b \leq a \). Define \(Y := Z - X \). (\(\mathcal{X} \) is a set of solid 3-points in Figure 3.) Then an Artinian \(k \)-configuration quotient \(R/(I_X + I_Y) \) has the SLP.

![Figure 3](image-url)

Proof. First, if \(a = b = 2 \), then it is immediate. If \(a \geq 3 \) and \(b = 2 \), by Lemma 3.3 it holds.

Now suppose \(a \geq b \geq 3 \) and assume that \(L_i \) is a line defined by a linear form \(L_i = x_0 - (i-1)x_1 \) and \(M_j \) is a line defined by a linear form \(M_j = x_1 - (j-1)x_2 \) for \(i \) and \(j \). Let \(\varphi_{ij} \) be a point defined by two linear forms \(L_i \) and \(M_j \). Then it is from [9, 11] that
\[
I_X = (L_1 L_2, L_1 M_1, M_1 M_2), \quad \text{and} \quad I_Y = (L_1 L_2 \cdots L_b, L_2 L_3 \cdots L_b M_3 \cdots M_a, L_3 \cdots L_b M_2 M_3 \cdots M_a, M_1 M_2 \cdots M_a).
\]
Then an ideal \(I_X + I_Y \) has 5-minimal generators, i.e.,
\[
I_X + I_Y = (L_1 L_2, L_1 M_1, M_1 M_2, L_2 L_3 \cdots L_b M_3 \cdots M_a, L_3 \cdots L_b M_2 M_3 \cdots M_a),
\]
and by [12, Theorem 2.1] the Hilbert function of \(R/(I_X + I_Y) \) is
\[
H_{R/(I_X + I_Y)} : \begin{array}{cccccc}
1 & 3 & 3 & \cdots & 3 & (a+b-4)st \\
3 & 1 & 0 & \rightarrow.
\end{array}
\]
(i) Assume \(x_0L_1^{a+b-4} = L_1^{a+b-3} \in [I_X + I_Y]_{a+b-3} \). Then
\[
x_0L_1^{a+b-4} = L_1^{a+b-3} = F_1L_1L_2 + F_2L_1M_1 + F_3M_1M_2 + \beta_1L_2L_3 \cdots L_bM_3 \cdots M_a
\]
for some \(F_i \in R_{a+b-5} \) and \(\beta_j \in k \). Since two linear forms \(L_1 \) and \(M_2 \) vanish on a point \(\wp \), we get that \(\beta_1 = 0 \). Similarly, we have \(\beta_2 = 0 \) as well. This means that
\[
x_0L_1^{a+b-4} = L_1^{a+b-3} = F_1L_1L_2 + F_2L_1M_1 + F_3M_1M_2 \in [I_X]_{a+b-3},
\]
which is a contradiction (see Lemma 3.2). Hence the Jordan type of \(H_{R/(I_X+I_Y)} \) is of the form
\[
J_{L_1} = (a+b-2, \ldots).
\]
(ii) Similarly, it is from Lemma 3.2 that the following 3-forms
\[
x_0L_1^{a+b-5}, x_1L_1^{a+b-5}, x_2L_1^{a+b-5}
\]
are linearly independent. In particular, the following 2-forms
\[
x_1L_1^{a+b-5}, x_2L_1^{a+b-5}
\]
are linearly independent. Hence the Jordan type of \(H_{R/(I_X+I_Y)} \) is
\[
J_{L_1} = H_{R/(I_X+I_Y)} = (a+b-2, a+b-4, a+b-4).
\]
It is from (i) and (ii) with Lemma 2.2 that an Artinian \(k \)-configuration quotient \(R/(I_X+I_Y) \) has the SLP, which completes the proof. \(\Box \)

We now slightly extend the previous result.

Lemma 3.5. Let \(X \) be a \(k \)-configuration of type \((1, 2, 3) \) in a basic configuration \(Z \) in \(\mathbb{P}^2 \) of type \((a, 3) \) with \(a \geq 3 \) such that \(Y := Z - X \). (\(X \) is a set of solid 6-points in Figure 4.) Then an Artinian \(k \)-configuration quotient \(R/(I_X + I_Y) \) has the SLP.

![Figure 4](image-url)

Proof. If \(a = 3 \), then in Proposition 3.4, \(Z \) is a basic configuration of type \((3, 3) \) and hence, \(Y \) is a set of 6 points, lemma holds. So we suppose that \(a > 3 \). First note that the Hilbert function of \(R/(I_X + I_Y) \) is
\[
H_{R/(I_X+I_Y)} : 1 \ 3 \ 6 \ \cdots \ (a-2)-nd \ 6 \ 3 \ 1 \ 0.
\]
We assume that L_i is a line defined by a linear form $L_i = x_0 - (i - 1)x_2$ and M_j is a line defined by a linear form $M_j = x_1 - (j - 1)x_2$ for i and j. Let $\varphi_{i,j}$ be a point defined by two linear forms L_i and M_j. Then

$$I_X = (L_1L_2L_3, L_1L_2M_1, L_1M_1M_2, M_1M_2M_3), \quad \text{and}\quad I_Y = (L_1L_2L_3, L_2L_3M_4 \cdots M_a, L_3M_4 \cdots M_a, M_2M_3 \cdots M_a).$$

So an ideal $I_X + I_Y$ has 7-minimal generators, i.e.,

$$I_X + I_Y = (L_1L_2L_3, L_1L_2M_1, L_1M_1M_2, M_1M_2M_3, L_2L_3M_4 \cdots M_a, L_3M_4 \cdots M_a, M_2M_3 \cdots M_a).$$

Note that

$$H_{R/\langle t_k + t_i \rangle}(i) = H_{R/t_i}(i)$$

for $0 \leq i \leq a - 2$.

(i) Assume $x_0L_1^{a-1} = L_1^a \in [I_X + I_Y]_a$. Then

$$x_0L_1^{a-1} = L_1^a = F_1L_2L_3 + F_2L_1L_2M_1 + F_3L_1M_1M_2 + F_4M_1M_2M_3 + \beta_1L_2L_3M_4 \cdots M_a + \beta_3L_3M_4 \cdots M_a + \beta_3M_2M_3 \cdots M_a$$

for some $F_i \in R_{a-3}$ and $\beta_j \in k$. Since two linear forms L_1 and M_3 vanish on a point $\varphi_{1,3}$, we get that $\beta_1 = 0$. Similarly, we have $\beta_2 = \beta_3 = 0$ as well. This means that

$$x_0L_1^{a-1} = L_1^a = F_1L_2L_3 + F_2L_1L_2M_1 + F_3L_1M_1M_2 + F_4M_1M_2M_3 \in [I_X]_a,$$

which is a contradiction (see Lemma 3.2). Hence the Jordan type of $H_{R/\langle t_k + t_i \rangle}$ is of the form

$$J_{L_1} = (a + 1, \ldots).$$

(ii) By the analogous argument as in (i), one can show that

$$x_1L_1^{a-2}, x_2L_1^{a-2} \notin [I_X + I_Y]_{a-1}.$$

We now suppose that

$$\alpha x_1L_1^{a-2} + \beta x_2L_1^{a-2} \in [I_X + I_Y]_{a-1}$$

for some $\alpha, \beta \in k$. Then

$$\alpha x_1L_1^{a-2} + \beta x_2L_1^{a-2} = F_1L_2L_3 + F_2L_1L_2M_1 + F_3L_1M_1M_2 + F_4M_1M_2M_3 + \beta_1L_2L_3M_4 \cdots M_a + \beta_3L_3M_4 \cdots M_a + \beta_3M_2M_3 \cdots M_a$$

for some $F_i \in R_{a-3}$ and $\beta_j \in k$. Since two linear forms L_1 and M_3 vanish on a point $\varphi_{1,3}$, we get that $\beta_1 = 0$. Similarly, we have $\beta_2 = \beta_3 = 0$ as well. This means that

$$\alpha x_1L_1^{a-2} + \beta x_2L_1^{a-2} = F_1L_2L_3 + F_2L_1L_2M_1 + F_3L_1M_1M_2 + F_4M_1M_2M_3 \in [I_X]_{a-1}.$$
By Lemma 3.2, we get that
\[\alpha x_1 + \beta x_2 = 0, \quad \text{i.e.,} \quad \alpha = \beta = 0, \]
which implies that two forms
\[x_1 L_1^{a_1 - 2}, x_2 L_1^{a_2 - 2} \]
are linearly independent. Hence the Jordan type of \(H_{R/(I_X + I_Y)} \) is of the form
\[J_{L_1} = (a + 1, a - 1, a - 1, \ldots). \]

(iii) It is from Lemma 3.2 that
\[x_2^2 L_1^{a_1 - 4}, x_1 x_2 L_1^{a_2 - 4}, x_2^2 L_1^{a_3 - 4} \notin [I_X]_{a - 2} = [I_X + I_Y]_{a - 2} \]
and the following set of 6-forms
\[\{x_0 L_1^{a_3 - 3}, x_1 L_1^{a_3 - 3}, x_2 L_1^{a_3 - 3}, x_1^2 L_1^{a_3 - 4}, x_1 x_2 L_1^{a_3 - 4}, x_2^2 L_1^{a_3 - 4}\} \]
is linearly independent. In particular, the 3-forms
\[x_1^2 L_1^{a_3 - 4}, x_1 x_2 L_1^{a_3 - 4}, x_2^2 L_1^{a_3 - 4} \]
are linearly independent. Hence the Jordan type of \(H_{R/(I_X + I_Y)} \) is of the form
\[J_{L_1} = (a + 1, a - 1, a - 1, a - 3, a - 3, a - 3). \]

It is from (i) ∼ (iii) that the Jordan type \(J_{L_1} \) is
\[J_{L_1} = H_{R/(I_X + I_Y)}' = (a + 1, a - 1, a - 1, a - 3, a - 3, a - 3). \]

Therefore, by Lemma 2.2, an Artinian \(k \)-configuration quotient \(R/(I_X + I_Y) \) has the SLP.

\[\square \]

Theorem 3.6. Let \(X \) be a \(k \)-configuration of type \((1, 2, 3)\) in a basic configuration \(Z \) in \(\mathbb{P}^2 \) of type \((a, b)\) with \(a \geq 4 \) and \(b \geq 3 \), and let \(Y := Z - X \). \((X \) is a set of solid 6-points in Figure 5.) Then an Artinian ring \(R/(I_X + I_Y) \) has the SLP.

\[\begin{array}{ccccccc}
\circ & \circ & \circ & \circ & \circ & \circ & \circ \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \\
\bullet & \circ & \circ & \circ & \circ & \circ & \circ \\
\bullet & \bullet & \circ & \circ & \circ & \circ & \circ \\
M_1 & M_2 & M_3 & M_4 & \cdots & M_a
\end{array} \]

Figure 5
Proof. If $b = 3$, then, by Lemma 3.5, it holds. So we suppose that $b > 3$. Note that, by [12, Theorem 2.1], the Hilbert function of $R/(I_X + I_Y)$ is

$$H_{R/(I_X+I_Y)} : 1 \quad 3 \quad 6 \quad \cdots \quad (a+b-5)\cdot \cdots \quad 6 \quad 3 \quad 1 \quad 0.$$

We assume that L_i is a line defined by a linear form $L_i = x_0 - (i-1)x_2$ and M_j is a line defined by a linear form $M_j = x_1 - (j-1)x_2$ for i and j. Let $\varphi_{i,j}$ be a point defined by two linear forms L_i and M_j. Then

$$I_X = (L_1L_2L_3, L_1L_2M_1, L_1M_1M_2, M_1M_2M_3), \quad \text{and}$$

$$I_Y = (L_1L_2 \cdots L_b, L_2 \cdots L_bM_4 \cdots M_a, L_3 \cdots L_bM_4 \cdots M_a, L_4 \cdots L_bM_2 \cdots M_a).$$

So an ideal $I_X + I_Y$ has 7-minimal generators, i.e.,

$$I_X + I_Y = (L_1L_2L_3, L_1L_2M_1, L_1M_1M_2, M_1M_2M_3, L_2 \cdots L_bM_4 \cdots M_a, L_3 \cdots L_bM_3 \cdots M_a, L_4 \cdots L_bM_2 \cdots M_a).$$

Note that

$$H_{R/(I_X+I_Y)}(i) = H_{R/I_X}(i)$$

for $0 \leq i \leq a + b - 5$.

(i) Assume $x_0L_1^{a+b-4} = L_1^{a+b-3} \in [I_X + I_Y]_{a+b-3}$. Then

$$x_0L_1^{a+b-4} = L_1^{a+b-3} = F_1L_1L_2L_3 + F_2L_1L_2M_1 + F_3L_1M_1M_2 + F_4M_1M_2M_3$$

$$+ \beta_1L_2 \cdots L_bM_4 \cdots M_a + \beta_2L_3 \cdots L_bM_4 \cdots M_a$$

$$+ \beta_3L_4 \cdots L_bM_2 \cdots M_a$$

for some $F_i \in R_{a+b-6}$ and $\beta_j \in k$. Since two linear forms L_1 and M_3 vanish on a point $\varphi_{1,3}$, we get that $\beta_1 = 0$. Similarly, we have $\beta_2 = \beta_3 = 0$ as well. This means that

$$x_0L_1^{a+b-4} = L_1^{a+b-3}$$

$$= F_1L_1L_2L_3 + F_2L_1L_2M_1 + F_3L_1M_1M_2 + F_4M_1M_2M_3 \in [I_X]_{a+b-3},$$

which is a contradiction (see Lemma 3.2). Hence the Jordan type of $H_{R/(I_X+I_Y)}$ is of the form

$$J_{L_1} = (a + b - 2, \ldots).$$

(ii) By the analogous argument as in (i), one can show that

$$x_1L_1^{a+b-5}, x_2L_1^{a+b-5} \notin [I_X]_{a+b-4} = [I_X + I_Y]_{a+b-4}.$$

We now suppose that the following 3-forms

$$\alpha x_0L_1^{a+b-5} + \beta x_1L_1^{a+b-5} + \beta x_2L_1^{a+b-5} \in [I_X + I_Y]_{a+b-4}$$

for some $\alpha, \beta, \gamma \in k$, that is,

$$\alpha x_0L_1^{a+b-5} + \beta x_1L_1^{a+b-5} + \beta x_2L_1^{a+b-5}$$

$$= F_1L_1L_2L_3 + F_2L_1L_2M_1 + F_3L_1M_1M_2 + F_4M_1M_2M_3.$$
Remark has the SLP, which completes the proof of this theorem. Therefore, by Lemma 2.2, an Artinian, of type $(1, 2)$ or $(1, 2, 3)$ in a basic configuration in \mathbb{P}^2. However, if X is a k-configuration in \mathbb{P}^2 of type $(1, 2, \ldots, d)$ in a basic configuration in \mathbb{P}^2 with $d \geq 4$, then it cannot be proved by the same method as in the proof of Theorem 3.6.

References

AN ARTINIAN POINT-CONFIGURATION QUOTIENT... 783

Young Rock Kim
MAJOR IN MATHEMATICS EDUCATION
GRADUATE SCHOOL OF EDUCATION
HANKUK UNIVERSITY OF FOREIGN STUDIES
Seoul 02450, Korea
Email address: rocky777@hufs.ac.kr

Yong-Su Shin
DEPARTMENT OF MATHEMATICS
SUNGSHIN WOMEN’S UNIVERSITY
Seoul 02844, Korea
Email address: ysshin@sungshin.ac.kr