DOI QR코드

DOI QR Code

Comparative analysis for the corrosion susceptibility of copper alloys in sandy soil

  • Galai, Mouhsine (Laboratory of Materials Engineering and Environment: Modeling and Application, Faculty of Science, Ibn Tofail University) ;
  • Benqlilou, Hanane (International Institute for Water and Sanitation (IEA), National office of Electricity and the Potable Water) ;
  • Touhami, Mohamed Ebn (Laboratory of Materials Engineering and Environment: Modeling and Application, Faculty of Science, Ibn Tofail University) ;
  • Belhaj, Tounsi (International Institute for Water and Sanitation (IEA), National office of Electricity and the Potable Water) ;
  • Berrami, Khalifa (International Institute for Water and Sanitation (IEA), National office of Electricity and the Potable Water) ;
  • El Kafssaoui, Hassan (Laboratory of Materials Engineering and Environment: Modeling and Application, Faculty of Science, Ibn Tofail University)
  • 투고 : 2017.06.20
  • 심사 : 2018.01.09
  • 발행 : 2018.06.30

초록

Corrosion of copper alloys (copper, bronze and brass) in soil was evaluated at ambient temperature using various methods such as electrochemical impedance spectroscopy (EIS), polarization curves and Scanning Electron Microscopy (SEM) coupled with Energy Dispersive Spectroscopy microanalysis measurements. Three equivalent circuits were separately used to interpret the obtained impedance spectra. The EIS measurements indicated that the polarization resistance of all electrodes increases with increasing the immersion time. SEM showed a presence of three layers of corrosion products with various composition and morphology covering each electrode. In addition, it was found that at 20% of moisture content the $R_p$ values and the current density of all electrodes in the studied soil give the following order: copper > bronze > brass. Good consistency between the data obtained from EIS and PP measurements was observed.

키워드

참고문헌

  1. Schutze M, Feser R, Bender R. Corrosion resistance of copper and copper alloys. Dechema eV Society for Chemical Engineering and Biotechnology; 2011. p. 752.
  2. Davies DD. A note on the dezincification of brass and the inhibiting effect of elemental additions. New York: Copper Development Association; 1993. p. 1-9.
  3. Polan NW. Corrosion, metals handbook. 9th ed. ASTM International: Metals Park, Ohio; 1987. p. 614.
  4. Dermaj A, Hajjaji N, Joiret S, et al. Electrochemical and spectroscopic evidences of corrosion inhibition of bronze by a triazole derivative. Electrochim. Acta. 2007;52:4654-4662. https://doi.org/10.1016/j.electacta.2007.01.068
  5. Gerwin W, Baumhauer W. Effect of soil parameters on the corrosion of archaeological metal finds. Geoderma 2000;96:63-80. https://doi.org/10.1016/S0016-7061(00)00004-5
  6. Papadopoulou O, Vassiliou P, Grassini S, Angelini E, Gouda V. Soil-induced corrosion of ancient Roman brass - A case study. Mater. Corros. 2016;67:160-169. https://doi.org/10.1002/maco.201408115
  7. Tylecote RF. The effect of soil conditions on the long-term corrosion of buried tin-bronzes and copper. J. Archaeol. Sci. 1979;6:345-368. https://doi.org/10.1016/0305-4403(79)90018-9
  8. Neff D, Dillmann P, Bellot-Gurlet L, Beranger G. Corrosion of iron archaeological artefacts in soil: Characterisation of the corrosion system. Corros. Sci. 2005;47:515-535. https://doi.org/10.1016/j.corsci.2004.05.029
  9. Li M, Lin H, Cao C. Influence of moisture content on soil corrosion behavior of carbon steel. Corros. Sci. Prot. Technol. 2000;12:219-221.
  10. Wu YH, Sun C, Zhang SQ, Cai DC, Li GH, Liu X. Influence of soil humidity on corrosion behavior of X70 pipeline steel in saline soils of Qinghai salt lake region. Corros. Sci. Prot. Technol. 2005;17:87-90.
  11. Fei XD, Li MQ, Xu HM, Li YQ, Cai DC. Influence of soil humidity on corrosion behavior of X70 steel in yellow pebble soil. Corros. Sci. Prot. Technol. 2007;19:35-37.
  12. Mincheol K, Inakazu T, Koizumi A, Koo J. Statistical approach for corrosion prediction under fuzzy soil environment. Environ. Eng. Res. 2013;18:37-43. https://doi.org/10.4491/eer.2013.18.1.037
  13. Galai M, Benqlilou H, Ebn Touhami M, et al. Nitrate effect on degradation processes of ${\alpha},({\alpha}+{\beta})$-brasses in Moroccan Azrou soil medium. Anal. Bioanal. Electrochem. 2017;9:673-688.
  14. Galai M, Ouassir J, Ebn Touhami M, et al. ${\alpha}$-brass and (${\alpha}+{\beta}$) brass degradation processes in Azrou soil medium used in plumbing devices. J. Bio. Tribo. Corros. 2017;3:30. https://doi.org/10.1007/s40735-017-0087-y
  15. Boukamp A. Users manual equivalent circuit. ver. 4.51. the Netherlands: University of Twente; 1993.
  16. Raistrick ID, MacDonald JR, Francschetti DR. Impedance spectroscopy emphasizing solid materials and systems. New York: John Wiley & Sons; 1987. Chapter 2.
  17. Amar H, Benzakour J, Derja A, Villemin D, Moreau B, Braisaz T. Piperidin-1-yl-phosphonic acid and (4-phosphonopiperazin-1-yl) phosphonic acid: A new class of iron corrosion inhibitors in sodium chloride 3% media. Appl. Surf. Sci. 2006;252:6162-6172. https://doi.org/10.1016/j.apsusc.2005.07.073
  18. Touir R, Dkhireche N, EbnTouhami M, et al. Study of phosphonate addition and hydrodynamic conditions on ordinary steel corrosion inhibition in simulated cooling water. Mater. Chem. Phys. 2010;122:1-9. https://doi.org/10.1016/j.matchemphys.2010.02.063
  19. Bouyanzer A, Hammouti B, Majidi L. Pennyroyal oil from Mentha pulegium as corrosion inhibitor for steel in 1M HCl. Mater. Lett. 2006;60:2840-2843. https://doi.org/10.1016/j.matlet.2006.01.103
  20. Emregul KC, Hayvali M. Studies on the effect of a newly synthesized Schiff base compound from phenazone and vanillin on the corrosion of steel in 2M HCl. Corros. Sci. 2006;48:797-812. https://doi.org/10.1016/j.corsci.2005.03.001
  21. Benabdellah M, Souane R, Cheriaa N, Abidi R, Hammouti B, Vicens J. Synthesis of calixarene derivatives and their anticorrosive effect on steel in 1M HCl. Pigm. Resin Technol. 2007;36:373-381. https://doi.org/10.1108/03699420710831791
  22. Marusica K, curkovic HO, Takenouti H. Inhibiting effect of 4-methyl-1-p-tolylimidazole to the corrosion of bronze patinatedinsulphate medium. Electrochim. Acta. 2011;56:7491-7502. https://doi.org/10.1016/j.electacta.2011.06.107
  23. Wang D, Xiang B, Liang Y, Song S, Liu C. Corrosion control of copper in 3.5 wt.% NaCl solution by domperidone: Experimental and theoretical study. Corros. Sci. 2014;85:77-86. https://doi.org/10.1016/j.corsci.2014.04.002
  24. Li W, Hu L, Zhang S, Hou B. Effects of two fungicides on the corrosion resistance of copper in 3.5% NaCl solution under various conditions. Corros. Sci. 2011;53:735-745. https://doi.org/10.1016/j.corsci.2010.11.006
  25. Kear G, Barker BD, Walsh FC. Electrochemical corrosion of unalloyed copper inchloride media a critical review. Corros. Sci. 2004;46:109-135. https://doi.org/10.1016/S0010-938X(02)00257-3
  26. Sadawy MM, Ghanem M. Grain refinement of bronze alloy by equal-channel angular pressing (ECAP) and its effect on corrosion behaviour. Defence Technol. 2016;12:316-323. https://doi.org/10.1016/j.dt.2016.01.013
  27. Bacarella AL, Griess JC. The anodic dissolution of copper in flowing sodium chloride solutions between $25^{\circ}\;and\;175^{\circ}C$. J. Electrochem. Soc. 1973;120:459-465. https://doi.org/10.1149/1.2403477
  28. Chawla SK, Rickett BI, Sankarraman N, Payer JH. An X-ray photo-electronspectroscopic investigation of the air-formed film on copper. Corros. Sci. 1992;33:1617-1631. https://doi.org/10.1016/0010-938X(92)90038-5
  29. Badawy WA, AL-Kharafi FM. Corrosion behavior of brass alloys in aqueous solutions of different pH. Corros. Sci. 1999;55:268-277. https://doi.org/10.5006/1.3283987
  30. Assouli B. Etude par emission acoustique associee aux methodes electrochimiques de la corrosion et de la protection de l'alliage cuivre-zinc (60/40) en milieu neutre et alcalin [thesis]. INPT, France. 2002.
  31. Lucey VF. The mechanism of dezincification and the effect of arsenic. Brit. Corros. J. 1965;1:53-59. https://doi.org/10.1179/000705965798328137
  32. He B, Han P, Lu C, Bai XH. Effect of soil particle size on the corrosion behavior of natural gas pipeline. Eng. Fail. Anal. 2015;58:19-30. https://doi.org/10.1016/j.engfailanal.2015.08.027
  33. Sohn S, Kang T. The effects of tin and nickel on the corrosion behavior of 60Cu-40Zn alloys. J. Alloy. Compd. 2002;335:281-289. https://doi.org/10.1016/S0925-8388(01)01839-4

피인용 문헌

  1. Copper Corrosion Behavior in Simulated Concrete-Pore Solutions vol.10, pp.4, 2018, https://doi.org/10.3390/met10040474
  2. Electrodeposition from a Graphene Bath: A Sustainable Copper Composite Alloy in a Graphene Matrix vol.5, pp.1, 2021, https://doi.org/10.3390/jcs5010009
  3. Ultrasonically Assisted Macrocyclic Ring Compound Coatings for Corrosion Protection of Copper in 3.5% NaCl Solution vol.77, pp.7, 2018, https://doi.org/10.5006/3703
  4. Thermal Analysis and Selected Properties of CuNi2Si Alloy Used for Railway Traction vol.14, pp.16, 2021, https://doi.org/10.3390/ma14164613
  5. Corrosion Behavior in Volcanic Soils: In Search of Candidate Materials for Thermoelectric Devices vol.14, pp.24, 2018, https://doi.org/10.3390/ma14247657