DOI QR코드

DOI QR Code

Performance of Fusarium oxysporum EKT01/02 isolate in cyanide biodegradation system

  • Akinpelu, Enoch Akinbiyi (Bioresource Engineering Research Group (BioERG), Cape Peninsula University of Technology) ;
  • Adetunji, Adewole Tomiwa (Bioresource Engineering Research Group (BioERG), Cape Peninsula University of Technology) ;
  • Ntwampe, Seteno Karabo Obed (Bioresource Engineering Research Group (BioERG), Cape Peninsula University of Technology) ;
  • Nchu, Felix (Bioresource Engineering Research Group (BioERG), Cape Peninsula University of Technology) ;
  • Mekuto, Lukhanyo (Bioresource Engineering Research Group (BioERG), Cape Peninsula University of Technology)
  • 투고 : 2017.10.23
  • 심사 : 2018.02.06
  • 발행 : 2018.06.30

초록

This study reports a cyanide resistant and/or tolerant fungus, isolated from the rhizosphere of Zea mays contaminated with cyanide-based pesticides. The isolate was characterised using molecular biology. The effect of free cyanide and heavy metals on the growth of isolate in a synthetic gold mine wastewater was examined. The molecular analyses identified the isolate as Fusarium oxysporum EKT01/02 (KU985430/KU985431). The isolate had a free cyanide degradation efficiency of 77.6%. The results indicated greater growth impairment in culture containing Arsenic (optical density 1.28 and 1.458) and cyanide (optical density 1.315 and 1.385). Higher growth was observed in all cultures supplemented with extracellular polymeric substance. This study showed that the isolate possesses wide substrate utilisation mechanism that could be deployed in environmental engineering applications.

키워드

참고문헌

  1. Maniyam MN, Sjahrir F, Ibrahim AL. Bioremediation of cyanide by optimized resting cells of Rhodococcus strains isolated from Peninsular Malaysia. Int. J. Biosci. Biochem. Bioinform. 2011;1:98-102.
  2. Mukherjee PK, Chandra J, Yu C, Sun Y, Pearlman E, Ghannoum MA. Characterization of Fusarium keratitis outbreak isolates: Contribution of biofilms to antimicrobial resistance and pathogenesis. Invest. Ophthalmol. Vis. Sci. 2012;53:4450-4457. https://doi.org/10.1167/iovs.12-9848
  3. Dash RR, Gaur A, Balomajumder C. Cyanide in industrial wastewaters and its removal: A review on biotreatment. J. Hazard. Mater. 2009;163:1-11. https://doi.org/10.1016/j.jhazmat.2008.06.051
  4. Hubbe MA, Hasan SH, Ducoste JJ. Cellulosic substrates for removal of pollutants from aqueous systems: A review. 1. Metals. BioResources 2011;6:2161-2287.
  5. Du Plessis C, Barnard P, Muhlbauer R, Naldrett K. Empirical model for the autotrophic biodegradation of thiocyanate in an activated sludge reactor. Lett. Appl. Microbiol. 2001;32:103-107. https://doi.org/10.1046/j.1472-765x.2001.00859.x
  6. Huddy RJ, van Zyl AW, van Hille RP, Harrison STL. Characterisation of the complex microbial community assoaciated with the $ASTER^{TM}$ thiocyanate biodegradation system. Miner. Eng. 2015;76:65-71. https://doi.org/10.1016/j.mineng.2014.12.011
  7. Barclay M, Tett VA, Knowles CJ. Metabolism and enzymology of cyanide/metallocyanide biodegradation by Fusarium solani under neutral and acidic conditions. Enzym. Microb. Technol. 1998;23:321-330. https://doi.org/10.1016/S0141-0229(98)00055-6
  8. Santos BAQ, Ntwampe SKO, Hamuel J, Muchatibaya G. Application of Citrus sinensis solid waste as a pseudo-catalyst for free cyanide conversion under alkaline conditions. BioResources 2013;8:3461-3467.
  9. Khamar Z, Makhdoumi-Kakhki A, Mahmudy Gharaie MH. Remediation of cyanide from the gold mine tailing pond by a novel bacterial co-culture. Int. Biodeter. Biodegr. 2015;99:123-128. https://doi.org/10.1016/j.ibiod.2015.01.009
  10. Mekuto L, Alegbeleye OO, Ntwampe SKO, Ngongang MM, Mudumbi JB, Akinpelu EA. Co-metabolism of thiocyanate and free cyanide by Exiguobacterium acetylicum and Bacillus marisflavi under alkaline conditions. 3 Biotech 2016;6:1-11.
  11. Leslie JF, Summerell BA, Bullock S. The Fusarium laboratory manual. Wiley Online Library; 2006.
  12. Akinpelu EA, Adetunji AT, Ntwampe SKO, Nchu F, Mekuto L. Biochemical characteristics of a free cyanide and total nitrogen assimilating Fusarium oxysporum EKT01/02 isolate from cyanide contaminated soil. Data Brief 2017;14:84-87. https://doi.org/10.1016/j.dib.2017.07.023
  13. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013;30:2725-2729. https://doi.org/10.1093/molbev/mst197
  14. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980;16:111-120. https://doi.org/10.1007/BF01731581
  15. Acheampong MA, Paksirajan K, Lens PNL. Assessment of the effluent quality from a gold mining industry in Ghana. Environ. Sci. Pollut. Res. 2013;20:3799-3811. https://doi.org/10.1007/s11356-012-1312-3
  16. O'Donnell K, Kistler HC, Cigelnik E, Ploetz RC. Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. USA 1998;95:2044-2049. https://doi.org/10.1073/pnas.95.5.2044
  17. Bogale M, Wingfield BD, Wingfield MJ, Steenkamp ET. Characterization of Fusarium oxysporum isolates from Ethiopia using AFLP, SSR and DNA sequence analyses. Fungal Divers. 2006;23:51-66.
  18. Kruger MC, Bertin PN, Heipieper HJ, Arsene-Ploetze F. Bacterial metabolism of environmental arsenic - Mechanisms and biotechnological applications. Appl. Microbiol. Biotechnol. 2013;97:3827-3841. https://doi.org/10.1007/s00253-013-4838-5
  19. Akcil A. Destruction of cyanide in gold mill effluents: Biological versus chemical treatments. Biotechnol Adv. 2003;21:501-511. https://doi.org/10.1016/S0734-9750(03)00099-5
  20. Ebbs S. Biological degradation of cyanide compounds. Curr. Opin. Biotechnol. 2004;15:231-236. https://doi.org/10.1016/j.copbio.2004.03.006
  21. Durve A, Naphade S, Bhot M, Varghese J, Chandra N. Characterisation of metal and xenobiotic resistance in bacteria isolated from textile effluent. Adv. Appl. Sci. Res. 2012;3:2801-2806.
  22. Jha S, Chauhan R, Dikshit S. Fungal biomass as biosorbent for removal of heavy metal from industrial wastewater effluent. Asian J. Plant Sci. 2014;13:93. https://doi.org/10.3923/ajps.2014.93.97
  23. Verma P, Singh S, Verma R. Heavy metal biosorption by Fusarium strains isolated from iron ore mines overburden soil. Int. J. Environ. Sci. Toxicol. Res. 2016;4:61-69.
  24. Sala M, Karner M, Arin L, Marrase C. Measurement of ectoenzyme activities as an indication of inorganic nutrient imbalance in microbial communities. Aquat. Microb. Ecol. 2001;23:301-311. https://doi.org/10.3354/ame023301
  25. Muller T, Muller M, Behrendt U. Leucine arylamidase activity in the phyllosphere and the litter layer of a Scots pine forest. FEMS Microbiol. Ecol. 2004;47:153-159. https://doi.org/10.1016/S0168-6496(03)00258-7
  26. Chrost RJ. Significance of bacterial ectoenzymes in aquatic environments. In: Ilmavirta V, Jones RI, eds. The dynamics and use of lacustrine ecosystems: Proceedings of the 40-Year Jubilee Symposium of the Finnish Limnological Society, held in Helsinki, Finland, 6-10 August 1990. Dordrecht: Springer Netherlands; 1992. p. 61-70.
  27. Gadd GM. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology 2010;156:609-643. https://doi.org/10.1099/mic.0.037143-0
  28. Akinpelu EA, Amodu OS, Mpongwana N, Ntwampe SKO, Ojumu TV. Utilization of Beta vulgaris agrowaste in biodegradation of cyanide contaminated wastewater. In: Ekinci D, ed. Biotechnology. Croatia: INTECH; 2015. p. 59-75.
  29. Paper JM, Scott-Craig JS, Cavalier D, et al. ${\alpha}$-Fucosidases with different substrate specificities from two species of Fusarium. Appl. Microbiol. Biotechnol. 2013;97:5371-5380. https://doi.org/10.1007/s00253-012-4423-3
  30. Anuradha K, Padma PN, Venkateshwar S, Reddy G. Fungal isolates from natural pectic substrates for polygalacturonase and multienzyme production. Indian J. Microbiol. 2010;50:339-344. https://doi.org/10.1007/s12088-010-0054-5
  31. Singh R, Shivaprakash M, Chakrabarti A. Biofilm formation by zygomycetes: Quantification, structure and matrix composition. Microbiology 2011;157:2611-2618. https://doi.org/10.1099/mic.0.048504-0
  32. Seidler MJ, Salvenmoser S, Muller F-MC. Aspergillus fumigatus forms biofilms with reduced antifungal drug susceptibility on bronchial epithelial cells. Antimicrob. Agents Chemother. 2008;52:4130-4136. https://doi.org/10.1128/AAC.00234-08
  33. Mowat E, Williams C, Jones B, Mcchlery S, Ramage G. The characteristics of Aspergillus fumigatus mycetoma development: Is this a biofilm? Med. Mycol. 2009;47:S120-126. https://doi.org/10.1080/13693780802238834
  34. Peiqian L, Xiaoming P, Huifang S, Jingxin Z, Ning H, Birun L. Biofilm formation by Fusarium oxysporum f. sp. cucumerinum and susceptibility to environmental stress. FEMS Microbiol. Lett. 2014;350:138-145. https://doi.org/10.1111/1574-6968.12310

피인용 문헌

  1. A kinetic study of 4-chlorophenol biodegradation by the novel isolated Bacillus subtilis in batch shake flask vol.25, pp.1, 2018, https://doi.org/10.4491/eer.2018.416
  2. Principles and methods of bio detoxification of cyanide contaminants vol.22, pp.4, 2020, https://doi.org/10.1007/s10163-020-01013-6
  3. Effects of physicochemical properties of Au cyanidation tailings on cyanide microbial degradation vol.56, pp.4, 2018, https://doi.org/10.1080/10934529.2021.1885259
  4. Novel Materials for Myco-Decontamination of Cyanide-Containing Wastewaters through Microbial Biotechnology vol.1037, pp.None, 2018, https://doi.org/10.4028/www.scientific.net/msf.1037.751
  5. Biodegradation of 4-chlorophenol in batch and continuous packed bed reactor by isolated Bacillus subtilis vol.301, pp.None, 2022, https://doi.org/10.1016/j.jenvman.2021.113851